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Abstract
In this paper we introduce a new compression technique for 2D vector fields which preserves the complete topol-
ogy, i.e., the critical points and the connectivity of the separatrices. As the theoretical foundation of the algorithm,
we show in a theorem that for local modifications of a vector field, it is possible to decide entirely by a local
analysis whether or not the global topology is preserved. This result is applied in a compression algorithm which
is based on a repeated local modification of the vector field - namely a repeated edge collapse of the under-
lying piecewise linear domain. We apply the compression technique to a number of data sets with a complex
topology and obtain significantly improved compression ratios in comparison to pre-existing topology-preserving
techniques.
Keywords: data visualization, flow visualization, vector field compression, vector field topology.

1. Introduction

Flow visualization is one of the most important subfields of
scientific visualization. From its very beginning, flow visu-
alization has had to face the problem of dealing with large
and complex data - usually far more complex than a human
is able to process, or than computers can transmit and pro-
cess in acceptable times. Thus most of the flow visualiza-
tion techniques are somehow involved with compressing and
simplifying the flow data, either by visualizing only impor-
tant parts of the data or by extracting features which contain
the most relevant information about the vector field. See 16

for an overview of flow visualization techniques.

One of the most important features of a vector field is its
topological skeleton which has been introduced as a visual-
ization tool in 11. The topological skeleton of a vector field
essentially consists of a collection of critical points and spe-
cial stream lines called separatrices which separate the flow
into areas of different flow behavior. The attractiveness of
the topological skeleton as a visualization tool lies in the fact
that even a complex flow behavior can be expressed (and vi-
sualized) by using only a limited number of graphical prim-
itives.

In the original work of 11, only first order critical points
were considered, i.e. critical points with a non-vanishing Ja-
cobian. Based on an eigenvector analysis of the Jacobian

matrix, these critical points were classified into sources,
sinks, centers and saddles. Furthermore, the only separatri-
ces which were considered started from the saddle points
in the directions of the eigenvectors of the Jacobian matrix
there. In addition, separatrices from detachment and attach-
ment point starting at zero-flow boundaries were considered.

In the following years, this concept of the topological
skeleton of a vector field has been extended by consider-
ing higher order critical points 17, separatrices starting from
boundary switch points 4, closed stream lines 25, critical
points at infinity 23, and separation and attachment lines 13.
In 2, the topology of scalar fields is treated for visualiza-
tion purposes. First approaches for visualizing 3D topologi-
cal skeletons are in 8.

Flow data sets tend to be large and complex. This fact has
motivated intensive research in simplifying and compressing
vector fields. For both challenges, topological concepts have
been applied. Topological simplification techniques apply if
the topological complexity of the data set is high and if it
is known that certain topological features are due to noise.
4 collapses critical points by using area metrics. 5 proposes
two methods: an implicit method (apply a global smooth-
ing over the vector field), and an explicit method (collapse
appropriate adjacent first order critical points). In 21, clus-
ters of first order critical points are merged to a higher or-
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der critical point. 22 collapses pairs of critical points under
preservation of the underlying grid structure of the vector
field. 24 analyzes the curvature normal of certain time sur-
faces to obtain a topology-preserving smoothing of a vec-
tor field. The simplification of the topology of scalar fields
(which can be considered as a special case of vector field
topology) is treated in 6 and 1. All these topology simpli-
fication algorithms mentioned above focus on reducing the
number of critical points and do not explicitly treat separatri-
ces. However, since a high number of separatrices starts and
ends in critical points, a reduction of the number of critical
points also reduces the number of separatrices.

Compression techniques for vector fields are motivated by
the necessity of transmitting large flow data sets over net-
works with low bandwidth, or by the goal to produce vi-
sualizations of the data in low-end machines with a small
main memory. For these cases the consideration of com-
pressed vector fields makes the process of visual analysis
of the flow data more efficient and is sometimes the only
way to process the data in reasonable time rates at all. Sim-
ple compression techniques (10, 7, 18) are based on distance
functions which locally compare the vectors of the vector
fields without including topological issues. Since the topo-
logical skeleton has been proven to describe the vector field
in a compact way, it is a natural approach to search for com-
pression techniques which are based on the topology of the
vector fields. 15 is a first approach to compress a vector field
under the consideration of preserving the characteristics of
critical points. Based on a distance measure of vector fields
which compares the present critical points, a compression is
carried out until the difference of original and compressed
vector field exceeds a certain threshold. In 19 a method is
introduced which does not only preserve the critical points
but also the behavior of the separatrices. This is achieved by
extracting the topological skeleton and reconstructing it by a
new piecewise linear vector field. For rather simple topolo-
gies, this reconstructed piecewise linear vector field turns out
to be a compressed version of the original one. However, if
the topology of the vector field becomes more complex, the
compression ratio drops and might become even negative.

In this paper we introduce a new method of topology pre-
serving vector field compression. Contrary to pre-existing
compression methods, our method guarantees that the topol-
ogy of original and compressed vector field coincides both
for critical points and for the connectivity of the separatri-
ces. We show that even under these strong conditions we
achieve high compression ratios for vector fields with com-
plex topologies. Our method works on a piecewise linear
vector field over a triangulation. We interpret the vector field
as a piecewise triangular mesh and adapt a standard mesh re-
duction algorithm (see e.g. 9) to this specific problem, i.e. we
achieve the compression by iteratively applying half-edge
collapses. Before a half-edge collapse is carried out, we have
to make sure that it does not change the global topology of
the vector field. We show in a theorem that this decision can

be made entirely by a local analysis of the vector field in the
1-ring which is affected by a half-edge collapse.

This paper is organized as follows: section 2 gives the the-
oretical background of vector field topology and shows the
theorem on which our compression algorithm is built. This
theorem states that – loosely spoken – for local modifications
of a vector field it can be decided by a local analysis whether
or not the topology is preserved. Section 3 uses this result to
introduce our topology-preserving compression algorithm.
This algorithm is based on a repeated half-edge collapse of
the triangular mesh. Section 4 demonstrates the application
of the compression algorithm to flow data sets of a complex
topology.

2. Theoretical background

In this section we give the theoretical background of our
compression algorithm. The main contribution of this sec-
tion is to show in theorem 1 that for a local modification
of the vector field it can be decided by a local analysis
whether the topology is affected by the modification. This
property is not evident, since the topology of a vector field is
a global feature, and local modifications of the vector field
may change the global behavior. To show this property, we
have to describe the concept of vector field topology and lo-
cal modifications in a formal way. Section 2.1 gives a formal
description of the topology of a 2D vector field. Section 2.2
discusses the concept of topological equivalence of vector
fields. Sections 2.3 treats the impact of local modifications
to the topology of a vector field. Section 2.4 discusses fur-
ther concepts and extensions of the topology of a 2D vector
field from the viewpoint of topology preserving local modi-
fications.

2.1. The topology of a 2D vector field

Let D⊂ IE2 be a closed point set which is bounded by n con-
tinuous boundary curves Fi (i = 0, ..,n−1). D serves as the
domain of the vector field. Normally, D is bounded by only
one curve, but we particularly allow domains with "holes",
i.e. more than one boundary curve. Then a vector field v is a
continuous map v : D → IR2. We define C(v) as the set of
all critical points of v:

C(v) = {x ∈ D : v(x) = (0,0)T} (1)

and assume that C(v) is a finite set, i.e., all critical points are
isolated. Also, we assume that no critical point lies on one
of the boundaries of D. Furthermore, let v be differentiable
in a neighborhood of each critical point, which gives that the
Jacobian matrix Jv(x) exists for each x ∈ C(v) (11). Here we
assume that all critical points are first order critical points,
i.e. det(Jv(x)) �= 0 holds for all x ∈ C(v). Based on an anal-
ysis of Jv, first order critical points can be classified into
saddles, sources, sinks, and centers (11, 12). For the descrip-
tion of the topology, saddle points are of particular interest.
A saddle s ∈ C(v) is characterized by det(Jv(s)) < 0.
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Let Fi be a boundary curve of D. Then v divides Fi into a
number of consecutive regions of heterogenous outflow and
inflow behavior of the vector field 4. A point b ∈ Fi is called
boundary inflow point iff

∃ε0 > 0 ∀ε > 0 : ε < ε0 ⇒ (b+ ε v(b)) ∈ D

i.e., the flow enters the domain D there. A point b ∈ Fi is
called boundary outflow point iff

∃ε0 > 0 ∀ε > 0 : ε < ε0 ⇒ (b+ ε v(b)) /∈ D

i.e., the flow leaves the domain D there. A point b ∈ Fi is
called boundary switch point iff in every ε-neighborhood of
b both boundary inflow and outflow points exist. For the case
of differentiable boundary curves, boundary switch points
are characterized by a flow direction parallel to the tangent
direction of the boundary curve in this point. Let B(v) be the
set of all boundary switch points of v.

In the following we assume that B(v) is a finite set. We
consider the boundary switch points on the boundary curve
Fi. The points on Fi which are located between adjacent
boundary switch points (while travelling in counterclock-
wise direction on F) have a similar inflow/outflow behavior:
all of them are either boundary inflow points, or all of them
are boundary outflow points. We call the set of all points on
F between two adjacent boundary switch points a boundary
inflow region or boundary outflow region. Figure 1a gives an
illustration.

x3

x2

x1

a) b) c)

Figure 1: a) The domain D (gray area) is bounded by two
boundary curves. The outer boundary curve has 4 bound-
ary switch points (yellow) which produce two boundary in-
flow regions (green line) and two boundary outflow regions
(red line). The inner boundary curve has 2 boundary switch
point producing one boundary inflow region and one bound-
ary outflow region; b) 3 points x1,x2,x3 and their stream
lines; x2 and x3 are stream line equivalent while x1 is not
stream line equivalent to x2 or x3; c) topological skeleton
of a vector field consisting of 2 boundary switch points (yel-
low), one boundary outflow region (red line), one boundary
inflow region (green line), one saddle point (blue point), one
source (green point), one sink (red point), and the separatri-
ces (black lines).

A stream line of v is a curve in D with the property that
for every point on the curve the tangent direction coincides
with the direction of v in this point (11). A particular stream
line can be obtained by picking a point x ∈ D and integrat-
ing both in forward and backward direction until the stream

line either ends in a critical point or leaves D in a boundary
inflow/outflow point (for now we assume that no circulat-
ing behavior of a stream line is present). Note that through
every non-critical point there is exactly one stream line. Fur-
thermore, stream lines cannot intersect each other (except
for critical points). These facts can be used to classify points
in D with respect to the behavior of the stream line through
them.

Let x ∈ D, and let Sv(x) be the stream line through x.
Sv(x) can be integrated both in forward and backward direc-
tion until it ends in a critical point or leaves D in a boundary
inflow/outflow point. We define

Definition 1 Two points x1,x2 ∈ D are stream line equiv-
alent concerning v (written x1 ∼s

v x2) if the stream lines
through x1 and x2 end in the same critical point or in-
flow/outflow region, for both forward and backward integra-
tion.

Figure 1b gives an illustration of definition 1.

The relation ∼s
v partitions D into sectors of similar flow

behavior. It is known (12, 4) that these sectors are separated
by a number of particular stream lines called separatrices.
The set of separatrices can be constructed by considering
the stream lines from the boundary switch points (both by
backward and forward integration), and certain stream lines
starting from saddle points.

Every boundary switch point b is related to two separatri-
ces: one separatrix is obtained by forward integration from
b, the other by backward integration. From a saddle point
s, four separatrices are constructed: for both eigenvectors of
Jv(s) in forward and backward direction. This means, we
construct separatrices from the four points

(s+ ε j1) , (s− ε j1) , (s+ ε j2) , (s− ε j2)

where j1, j2 are the two eigenvectors of Jv(s), ε is a very
small positive number, and the integration direction is "away
from the saddle point". This is justified by the fact that for
det(Jv(s)) �= 0, v is governed by a first order approximation
in a neighborhood of s. Using this system of separatrices,
each separatrix is uniquely defined by its starting point and
its integration direction.

After introducing the concepts above, we can define the
topological skeleton of a vector field as the collection of crit-
ical points, boundary switch points, and separatrices. Figure
1c illustrates an example.

2.2. Topologically equivalent vector fields

To compare the topology of vector fields, the concept of
topological equivalence of two vector fields v and w over
the same domain D has to be introduced. Several ways of do-
ing this are possible. One rather restrictive way is to demand
that v and w coincide in all critical points, their Jacobian ma-
trices, and all separatrices. Since for topologically complex
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vector fields the separatrices lie rather densely in the domain,
this definition tends to allow only identical vector fields to be
equivalent.

On the other hand, a very loose definition of topological
equivalence is to demand the coincidence of the structure of
the topology graph (i.e., corresponding critical points may
vary both in location and in Jacobian, as far as their connec-
tivity of the separatrices coincides.)

Here we want to use a compromise of the above-
mentioned definitions:

Definition 2 The vector fields v and w over the domain D are
topologically equivalent (written v ∼T w) iff the following
conditions hold:

i C(v) = C(w)
ii ∀x ∈ C(v) : Jv(x) = Jw(x)

iii B(v) = B(w)
iv Corresponding separatrices in v and w end in the same

critical point or boundary inflow/outflow region.

Concerning this definition, v and w have identical critical
points and boundary switch points. Thus v and w also have
the same number of separatrices. A separatrix in v corre-
sponds to a separatrix in w if they start in the same point
with the same integration direction.

This definition of topologically equivalent vector fields
is rather restrictive to critical points and boundary switch
points while giving some freedom to the separatrices. We
made this choice because it ensures that topologically equiv-
alent vector fields always have a zero distance concerning all
known topology based vector field metrics (14, 3, 20).

2.3. Local modifications of the topology

In this section we analyze the effect of local modifications of
the vector field and its topology. Since the topology of a vec-
tor field is a global feature, local modifications can change
the topology everywhere in its domain. Imagine for instance
the creation or removal of critical points in the modified area
which may affect the separatrices far away from this area.

Nevertheless we show in this section that it can be de-
cided entirely by a local analysis in the area to be modified,
whether or not a local modification of the vector field will
change its topology.

Let v and w be two differentiable vector fields over the
domain D, and let D′ ⊂ D be a closed subdomain which is
bounded by one closed curve F′ (thus assuming that D′ does
not have any holes). Furthermore, let D′′ = (D \D′)∪ F′,
and let v and w differ only inside D′, i.e.

∀x ∈ D′′ : v(x) = w(x). (2)

Figure 2 illustrates an example.

We search for local conditions for v ∼T w. To do so, we

a) b) c)

Figure 2: a) example of a vector field v and its topological
skeleton; b) example of a vector field w and its topological
skeleton; c) overlay of a) and b): v and w differ only inside
the area D′ (marked by the inner ring). Stream lines which
start in D′′ coincide in v and w until they enter D′. Since
they generally leave D′ in different points on F′, they have
different paths in D′′after passing through D′.

collect a number of points on F′. Let PF′(v) be the set of all
intersection points of all separatrices of v with F′, and let

QF′(v) = PF′(v) ∪ B(v|D′)

where v|D′ denotes the vector field v restricted to the do-
main D′. Assuming QF′(v) ⊂ F′ to be a finite set, we can
formulate

Theorem 1 The vector fields v and w fulfilling (2) are topo-
logically equivalent (v ∼T w) if the following conditions
hold:

1. Every separatrix of v and w intersects F′ a most once, i.e.
has at most one entry point and one exit point with F′.

2. v|D′ ∼T w|D′ .
3. The corresponding points in QF′(v) and QF′(w) are in

the same order on F′ (while travelling counterclockwise
around F′).

From (2) and condition 2. of theorem 1 it follows that v
and w have the same critical points and boundary switch
points. Hence, the separatrices of v and w have a one-to-
one correspondence concerning starting point and integra-
tion direction. This and condition 1. of theorem 1 gives that
there is also a one-to-one correspondence between PF′(v)
and PF′(w): a point x1 ∈ PF′(v) corresponds to x2 ∈ PF′(w)
if their creating separatrices correspond, and both are either
entry points or both are exit points of D′ while integrating in
integration direction. This unique correspondence between
PF′(v) and PF′(w) (and therefore also between QF′(v) and
QF′(w)) justifies the formulation of condition 3. of theorem
1.

Theorem 1 means that for checking the topological equiv-
alence of v and w, we simply have to collect the points of
QF′(v) and QF′(w), find the corresponding pairs, and com-
pare their order on F′.

To prove theorem 1 we have to show that the conditions
1.–3. of theorem 1 yield the conditions i–iv of definition
2. Conditions i–iii of definition 2 follow directly from (2)
and condition 2. of theorem 1. Only iv of definition 2 re-
mains to be shown. To do so, we construct the topological
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skeleton of the vector fields v|D′′ = w|D′′ as shown in fig-
ure 3a. This gives PF′(v|D′′) = PF′(w|D′′). Furthermore, we

a) b) c)

Figure 3: a) example vector field v|D′′ = w|D′′ (grey area)
and its topological skeleton; b) v|D′ and its topological
skeleton: PF′(v|D′) consists of the marked points on the
boundary of the grey area; c) w|D′ and its topological skele-
ton

construct the topological skeleton of the vector fields v|D′

and w|D′ , and compute PF′(v|D′) and PF′(w|D′). Figures
3b and 3c illustrate this. Condition 2. of theorem 1 ensures
that there is a one-to-one correspondence between PF′(v|D′)
and PF′(w|D′). Also, we have

PF′(v|D′′) ∪ PF′(v|D′) ⊆ QF′(v),

PF′(w|D′′) ∪ PF′(w|D′) ⊆ QF′(w).

This and condition 3. of theorem 1 ensure that correspond-
ing points of PF′(v|D′′) ∪ PF′(v|D′) and PF′(w|D′′) ∪
PF′(w|D′) are in the same order on F′.

The joint of the topological skeletons of v|D′ and v|D′′

does not yield the topological skeleton of v yet. In fact, all
separatrices which intersect F′ end there. Figure 4 illustrates
this. To complete the topological skeleton of v, we have to

a) b) c)

d)

Figure 4: a) joining the topological skeletons of v|D′

and v|D′′ does not yield the topological skeleton of v,
since the separatrices of v|D′ and v|D′′ end when cross-
ing F′; b) joining the topology of w|D′ and w|D′′ ; c)
PF′(v|D′′) ∪ PF′(v|D′) consists of the marked points on F′;
d) PF′(w|D′′) ∪ PF′(w|D′)

do the following constructions:

A continue the integration of all separatrices of v|D′ if they
leave D′ in a point on F′,

B continue the integration of all separatrices of v|D′′ if they
leave D′′ in a point on F′.

(The similar statement holds for the vector field w.) Con-
cerning A mentioned above, let S1 be a separatrix in v|D′ ,
and let S2 be the corresponding separatrix in w|D′ . This
means that S1 and S2 start from the same point in the same

integration direction. Let S1 intersect F′ in the point x1,
and let S2 intersect F′ in x2. In general, x1 and x2 differ.
Nevertheless, from condition 3. of theorem 1 we know that
x1 and x2 are located between the same adjacent points of
PF′(v|D′′) = PF′(w|D′′). This means that x1 and x2 are not
separated by a separatrix in v|D′′ = w|D′′ . Hence the integra-
tion of the stream lines in D′′ starting from x1 and x2 ends
in the same critical point or boundary inflow/outflow region:
the separatrices S1 and S2 in the whole domain D are corre-
sponding.

Concerning B mentioned above, let S1 be a stream line in
v|D′′ , let S2 = S1 be the corresponding stream line in w|D′′ ,
and let x ∈ PF′(v|D′) be the intersection of S1 and S2 with
F′. We integrate S1 in D′ from x until S1 leaves D′ in a
point x1 ∈ F′. Also, we integrate S2 in D′ from x until S2
leaves D′ in a point x2 ∈ F′. Figure 5 illustrates this. Since

a) b) c)

d)

Figure 5: a) continue integrating separatrices of v|D′′ if they
enter D′; b) continue integrating separatrices of w|D′′ if they
enter D′; c) QF′(v) consists of the marked points; d) QF′(w)
consists of the marked points.

x1 ∈ QF′(v), x2 ∈ QF′(w), and condition 3. of theorem 1,
x1 and x2 are located between the same adjacent points of
PF′(v|D′′) = PF′(w|D′′) on F′. Then the same argumenta-
tion as in A gives that S1 and S2 are corresponding in the
whole domain D, which proves theorem 1.

2.4. Extensions of the topology concept

In section 2.1 we made a number of simplifying assumptions
about the considered vector fields in order to keep the proof
of theorem 1 simple. Although many practical vector fields
(including our examples in the next section) fulfill these as-
sumptions, there are vector fields with different topological
structures. In this section we discuss the applicability of the-
orem 1 to these vector fields:

• Zero flow boundaries:
Zero flow boundaries are present if for instance the flow
around certain solids is simulated. Instead of boundary
switch points, attachment and detachment points divide
the boundary curve there. The proof of theorem 1 was
only based on the fact that the topological skeleton pro-
vides a complete partition to areas of similar flow behav-
ior. If this condition is fulfilled by the additional consid-
eration of attachment and detachment points, theorem 1
can also be applied for vector fields with zero-flow bound-
aries.

c© The Eurographics Association and Blackwell Publishers 2003.



Theisel and Rössl and Seidel / Topology Preserving Compression

• Closed separatrices:
Vector fields may have additional closed stream lines as
separatrices. These separatrices do not have a unique start-
ing point. Moreover, condition 1. of theorem 1 is not ful-
filled if such a separatrix intersects D′. Hence the condi-
tions of theorem 1 are not fulfilled if closed separatrices
enter D′.

• Higher order critical points:
If higher order critical points are present, the regions of
similar flow behavior around them are separated by a
number of separatrices. Since these separatrices have a
unique starting point, theorem 1 can be applied.

3. Compressing the vector field

In this section we apply the results of section 2 to build an
algorithm for topology preserving compression of 2D vector
fields. The algorithm works on a piecewise linear original
vector field. This means, given is a triangulation of the do-
main with velocity information in every vertex. This way the
vector field can be considered as a triangular mesh; the prob-
lem of compressing the vector data set is thus converted to a
mesh reduction problem.

Techniques for solving this simplification problem have
been studied extensively during the last decade, see e.g. 9

for a recent and comprehensive survey. We choose the so
called half-edge collapse as basic removal operator. It col-
lapses a vertex p0 into its neighbor p1 along the directed
edge (p0,p1) (see figures 7c and 7d for an example). Be-
fore a half-edge collapse is applied, we have to make sure
that it does not change the topology of the vector field. We
describe the algorithm for doing so in section 3.2. Section
3.1 describes the necessary data structures for the algorithm.
Section 3.3 describes the whole compression algorithm.

3.1. The data structure

As a preprocess of the algorithm, we have to extract the
topology of the original piecewise linear vector field and
store it in an appropriate data structure. This data structure
is essentially a triangular mesh with vector information at
each vertex. In addition, each triangle has information about
present critical points, boundary switch points and separa-
trices. If a critical point appears inside the triangle, its loca-
tion and classification is stored with the triangle. If there is a
boundary switch point in a boundary triangle, its location is
stored with the triangle. Starting from the boundary switch
points and saddle points, the separatrices are integrated over
the vector field. This way a separatrix usually passes through
a number of triangles. For each of these triangles the follow-
ing items are stored:

• ID of the separatrix
• entry point into triangle (or starting point of the integra-

tion if the separatrix origins inside the triangle) in integra-
tion direction

• exit point out of triangle (or critical point inside the trian-
gle where the separatrix ends) in integration direction

Note that the integration direction is not necessarily the flow
direction of the vector field. Instead, the integration direc-
tion is always "away from" its originating saddle point or
boundary switch point.

3.2. Controlled half-edge collapse

Based on the mesh data structure described above, we can
apply the results of theorem 1 to locally check whether a
half-edge collapse changes the topology of the vector field.
Let p0,p1 be two vertices which are connected by an edge,
let p1, ...,pn be the 1-ring around p0, and let t1, ..., tn be the
(counterclockwise ordered) triangles around p0. Figure 6a
illustrates this. A half-edge collapse p0 → p1 only affects

p0 p1

p2

p3

p4

p5

p6

p0 p1 p0 p1
t1

t2

t3

t4

t5

t6

a) b) c)

Figure 6: a) a half-edge collapse p0 → p1 only affects the
vector field inside the triangles t1, ..., tn; b) example of an
impossible half-edge collapse p0 → p1 because one separa-
trix enters D′ (marked grey) twice; c) for the same configu-
ration as b), the half-edge collapse p1 → p0 may be allowed
because the separatrix enters D′ (marked grey) only once.

the vector field inside the triangles t1, ..., tn. This is the area
D′ of theorem 1 in which local modifications of the vector
field take place.

Now we can describe the algorithm to check whether a
half-edge collapse changes the topology of a vector field:

Algorithm 1

1 Check if there are critical points inside D′ = (t1, ..., tn).
If so, stop and prohibit the half-edge collapse.

2 Collect all separatrices which pass through D′. For
each separatrix, store entry point and exit point of
D′ in a cyclic list L1 which is ordered concern-
ing the order of the points on the closed polygon
((p1,p2), ...,(pn−1,pn),(pn,p1)).

3 If a separatrix enters D′ more than once, stop and prohibit
the half-edge collapse.

4 Compute the boundary switch points of the vector field
on the polygon ((p1,p2), ...,(pn−1,pn),(pn,p1)), insert
these points to L1.

5 Simulate the half-edge collapse p0 → p1 while storing
the original configuration (to allow an undo of the half-
edge collapse).

6 Apply linear interpolation of the vec-
tor field inside the new triangles
(p1,p2,p3),(p1,p3,p4), ...,(p1,pn−1,pn)). Check
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whether there are critical points inside one of the new
triangles. If so, stop and prohibit half-edge collapse.

7 Construct a new cyclic ordered list L2 of points on the
polygon ((p1,p2), ...,(pn−1,pn),(pn,p1)) consisting of
the following points:

a. all boundary switch points of step 4 of the algorithm
b. the entry points of all separatrices to D′
c. integrate the stream lines starting from all points of

step 7b. of this algorithm inside D′ until they reach
the boundary again; store the exit points in L2.

8 Undo simulated half-edge collapse p0 → p1
9 Compare the cyclic order of the points in L1 and L2. If the

corresponding points do not have the same cyclic order in
L1and L2, stop and prohibit the half-edge collapse.

10 Stop and allow the half-edge collapse.

Figure 7 illustrates this algorithm where an edge collapse
is allowed. Figure 8 shows an example where the algorithm
prohibits an edge collapse.

a)

d) e)

b) c)

f)

Figure 7: Example of algorithms 1; a) 3 separatrices pass-
ing through D′, and 2 boundary switch points (yellow) are
present; the empty boxes are the entry points of the separa-
trices into D′ (in integration direction), the solid boxes de-
scribe the exit points; b) cyclic list L1 (grey arrows) after
step 2; c) L1 after step 4; d) collecting points of new list L2
after half-edge collapse: after step 7a. and 7b.; e) integrate
new stream lines (7c.); f) cyclic list L2 after step 7c.; edge
collapse is allowed, since the corresponding points in L1 and
L2 (shown in c) and f)) are in same order.

Algorithm 1 needs some remarks:

• The collected points in the lists L1 and L2 correspond to
QF′(v) and QF′(w) of theorem 1. Moreover, steps 1 and
6 of algorithm 1 ensure condition 2. of theorem 1, and
step 2 ensures condition 1. of theorem 1. Hence theorem
1 proves the correctness of algorithm 1.

• The entire algorithm works locally on the 1-ring around
p0 .

• If an edge collapse is impossible because of a re-entry of
a separatrix, an edge collapse of an adjacent edge (or of

a) b) c)

Figure 8: a) Another example of algorithms 1; a) 3 sepa-
ratrices passing through D′, and 2 boundary switch points
(yellow) are present: L1 consists of the marked points on the
boundary; b) points of L2 after step 7b.; c) points of L2 after
step 7c.; edge collapse is not allowed, since the correspond-
ing points in L1 and L2 (shown in a) and c)) are in different
order.

the opposite half-edge) might still be possible. Figures 6b
and 6c show an example.

3.3. The compression algorithm

The vector field compression is achieved by applying a mesh
reduction to the triangulated domain of the piecewise linear
vector field. A standard algorithm is adapted to this specific
problem. Its basic topological operator is the controlled half-
edge collapse from section 3.2. The mesh reduction algo-
rithm can now be sketched as follows:

Algorithm 2
Repeat. . .

1 Initialization. For all directed edges (pi,p j):

a. Apply Algorithm 1 to check whether half-edge col-
lapse is allowed.

b. If allowed: evaluate priority and put (p0,p1) into pri-
ority queue PQ

2 Iterative removal. While PQ not empty

a. Get and remove (pi,p j) from PQ.
b. If half-edge collapse (pi,p j) allowed: apply half-edge

collapse (pi,p j).
c. Update topology data structure.
d. Reapply Algorithm 1 to all edges incident to p j and

to p j’s 1-ring, and update PQ accordingly.

. . . until no more collapses possible.

Here, the inner loop reflects the standard mesh reduction al-
gorithm. The outer loop that causes repeated reinitialization
reflects the fact that local changes may have global impact
and may thus allow collapses that have been prohibited be-
fore. The update o the topology data structure (step 2c.) of
algorithm 2) is the most expensive part of the algorithm. If a
half-edge collapse is carried out, the topology data structure
(described in section 3.1 has to be updated: all separatrices
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which pass through the 1-ring around p0 have to be reinte-
grated from their entrance point into the 1-ring.

The whole process is a greedy optimization driven by a
priority queue. In a 3D setup the priority of a collapse would
be some kind of quality measure as e.g. distance to the origi-
nal surface. In the 2D case we are left with an additional de-
gree of freedom. A natural choice would be to locally apply
some difference measure for flow fields (7, 10). In our current
implementation we merely assign priorities proportional to
edge lengths, preferring short edges for collapse.

4. Results

We applied our compression algorithm to two test data sets.
The first data set describes (the perpendicular of) the flow
of a bay area of the Baltic Sea near Greifswald (Germany).
The data set was created by the Department of Mathematics,
University of Rostock (Germany). The data was given as an
incomplete flow data set on a regular 115 x 103 grid. Apply-
ing a triangulation of the defined cells, we have a piecewise
linear vector field consisting of 14,086 triangles (see figure
9a). Figure 9e shows the topological skeleton of the vector
field while figure 9c shows its LIC image. This flow data set
consists of 71 critical points, 44 boundary switch points, and
168 separatrices. Applying our compression algorithm, we
obtained a new piecewise linear vector field which consists
of 660 triangles. Figure 9b shows the piecewise triangular
domain of the compressed vector field. Figure 9d shows the
LIC image, and figure 9f shows the topological skeleton of
the compressed vector field. Note that the topological skele-
tons of original and compressed vector field (figures 9e and
9f) are equivalent concerning definition 2. The compression
ratio is 95.3%. The complete compression algorithm took
280 seconds on an Intel Xeon 1.7 GHz processor.

The second test data set describes the skin friction on a
face of a cylinder which was obtained by a numerical sim-
ulation of a flow around a square cylinder. The data set was
generated by R.W.C.P. Verstappen and A.E.P. Veldman of
the University of Groningen (the Netherlands). The same
data set has been analyzed in 4 and 15. The data was given
on a rectangular 102 x 64 grid with varying grid size. To
get a piecewise linear vector field, we divided each grid cell
in two triangles which gives a piecewise triangular domain
consisting of 12,726 triangles. Figure 10a shows the piece-
wise triangular domain of the vector field. As we can see in
this picture, all triangles there tend to be large and thin. Fig-
ure 10c shows the LIC image of the vector field while figure
10e shows its topological skeleton. This vector field consists
of 338 critical points, 34 boundary switch points, and 714
separatrices. Therefore, it can be considered as a vector field
of a complex topology. After applying our compression al-
gorithm, we obtained a vector field with the piecewise trian-
gular domain shown in figure 10b. This domain consists of
2,153 triangles which gives a compression ratio of 83.1 %.
Figure 10d shows the LIC image of the compressed vector

a) b)

c) d)

e) f)

Figure 9: Test data set 1 (flow in a bay area near Greif-
swald); a) piecewise triangular domain of the original data
set; b) piecewise triangular domain of the compressed data
set; c) LIC of original data set; d) LIC of compressed data
set; e) topological skeleton of original data set; f) topologi-
cal skeleton of compressed data set.

field, figure 10f shows the topological skeleton. The com-
plete compression algorithm took 299 seconds on an Intel
Xeon 1.7 GHz processor.

Because of the high complexity of the data set, the visu-
alizations in figure 10 appear to be cluttered. Therefore, we
present two magnifications of the skin friction data set in
figures 11 and 12. The larger rectangle in figure 10c denotes
the magnified area considered in figure 11; the smaller rect-
angle rectangle of figure 10c is magnified in figure 12. Note
that the topological skeletons of the original (figure 10e) and
the compressed vector field (figure 10f) are equivalent, even
though separatrices in the compressed flow tend to be very
close together.

5. Conclusions and Future research

We have introduced a new compression technique for 2D
vector fields which preserves the topological skeleton of
the vector field. Our examples have shown that even for
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a) b)

Figure 12: Magnification of test data set 2; a) topological
skeleton and underlying grid of original data set; b) topo-
logical skeleton and underlying grid of compressed data set;

topologically complex data sets high compression ratios are
achieved. Now we compare these compression ratios with
pre-existing topology preserving compression techniques.

15 analyzed the same skin friction data set as we do, but
uses a significantly less strict definition of topology. In fact,
small changes of the Jacobian of critical points are permit-
ted, and separatrices are not considered at all. Even with
this less strict topology concept, the compression ratio un-
der topology preservation (37 %) is significantly less than
ours. 19 uses a topology concept similar to the one used here,
i.e., 19 considers the complete Jacobian matrix of the criti-
cal points as well as the connectivity of the separatrices. The
compression algorithm presented there can only be applied
for data sets with a rather simple topology. For vector fields
with a topological complexity as in our examples, very low
or even negative compression ratios have to be expected.

We conclude that our new algorithm gives significantly
better compression ratios than known existing topology-
preserving compression techniques when applied to topolog-
ically complex data sets.

For future research, we see the following open questions:

• Up to now, research on vector field topology had fo-
cused either on the topological simplification or a topol-
ogy preserving compression. Combinations of both tech-
niques seem to be an interesting task. The main problem
there is to decide which parts of the topology are relevant,
and which parts can be removed by simplification before
topology preserving compression techniques are applied.

• We considered our vector fields to be a flat triangular
mesh with velocity information in each vertex. The same
approach can also be applied to vector fields on (gen-
eral) triangular meshes. Here the interplay between vec-
tor field compression techniques and mesh modification
techniques can be studied.
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a) b)

c) d)

e)
f)

Figure 10: Test data set 2 (skin friction); a) piecewise triangular domain of the original data set; b) piecewise triangular
domain of the compressed data set; c) LIC of original data set; d) LIC of compressed data set; e) topological skeleton of
original data set; f) topological skeleton of compressed data set.

a) b)

c) d)

e)
f)

Figure 11: Magnification of test data set 2; a) piecewise triangular domain of the original data set; b) piecewise triangular
domain of the compressed data set; c) LIC of original data set; d) LIC of compressed data set; e) topological skeleton of original
data set; f) topological skeleton of compressed data set.
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