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Abstract— This paper describes approaches to topologi-
cally segmenting 2D time-dependent vector fields. For this
class of vector fields, two important classes of lines exist:
stream lines and path lines. Because of this, two segmenta-
tions are possible: either concerning the behavior of stream
lines, or of path lines. While topological features based on
stream lines are well established, we introduce path line
oriented topology as a new visualization approach in this
paper. As a contribution to stream line oriented topology
we introduce new methods to detect global bifurcations like
saddle connections and cyclic fold bifurcations as well as a
method to tracking all isolated closed stream lines. To get
the path line oriented topology we segment the vector field
into areas of attracting, repelling and saddle-like behavior
of the path lines. We compare both kinds of topologies and
apply them to a number of test data sets.

Index Terms— flow visualization, vector field topology,
bifurcations, stream lines, path lines

I. INTRODUCTION

TOPOLOGICAL methods have become a standard
tool in vector field visualization. Initially intro-

duced as a visualization tool in [1], topological methods
have been extended to higher order critical points [2],
boundary switch points [3], and closed separatrices [4].
In addition, topological methods have been applied to
simplify [3] [5] [6] [7], smooth [8], compress [9] and
design [10] vector fields. The topology of 3D vector
fields is visualized in [11], [12], [13], [14], [15].

For 2D time-dependent vector fields there exists a
number of extensions of topological concepts. [16] and
[17] track the location of critical points over time and
detect local bifurcations like fold bifurcations and Hopf
bifurcations. This approach works on a piecewise linear
vector field and computes and connects the critical
points on the faces of a prism cell structure, which
is constructed from the underlying triangular grid. [4]
introduce a method to detect closed stream lines in
2D steady vector fields. This method also relies on the
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underlying triangular grid of the piecewise linear vector
field. [18] extends this to 2D time-dependent vector
fields by applying an approach similar to contouring
and connecting of isosurfaces: closed stream lines are
extracted for every time step, then corresponding lines
in adjacent time steps are connected. As every contouring
and connecting approach, special attention has to be paid
to events like appearance, disappearance or collapsing of
closed stream lines. [19] introduces a method to track
critical points in a time-dependent vector field which
does not depend on a particular underling grid: the paths
of the critical points are tracked as the stream lines of a
new vector field called feature flow field which can be
extracted from the original vector field.

The main motivation behind topological methods is to
segment a vector field into areas of similar flow behavior
which is determined by observing the behavior of cer-
tain characteristic curves. For 2D time-dependent vector
fields, two important classes of curves exist: stream lines
and path lines. Hence, two different kinds of topologies
can be considered: a stream line oriented topology where
areas are segmented which show a similar behavior of
stream lines, and a path line oriented topology which
does so for path lines. All above-mentioned 2D time-
dependent topological methods are stream line oriented.

This paper describes an extended version of [20].
Based on the distinction of stream line and path line
oriented topology, we make two major contributions:
for stream line oriented methods, we propose new ap-
proaches to detect global bifurcations like saddle connec-
tions and cyclic fold bifurcations. In addition we propose
a new approach to detect and track closed stream lines.
This approach does not depend on an underlying grid
structure, and it does not have to solve the correspon-
dence problem between adjacent time steps neither. The
second major contribution is the consideration of path
line oriented topology. This kind of topology has not
been considered in the visualization community yet. For
this, we divide the vector field into areas where the path
lines show attracting, repelling, or saddle-like behavior
respectively.

The rest of the paper is organized as follows: section
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II recalls the concepts of stream lines and path lines
and gives a setup to distinguish and analyze them.
Section III treats the streamline oriented topology: after
reviewing the most important concepts and previous
work (section III-A), we introduce a new method to
detect saddle connections (section III-B). Section III-
C presents a new method to track closed stream lines
which is independent of an underlying grid and robust
against cyclic fold bifurcations. To apply this, we need an
appropriate system of starting closed stream lines which
is introduced in section III-D. Section IV presents the
approach to a path line oriented topology by segmenting
the vector field into areas of different path line behavior.
In section V we apply both concepts of topology to
a number of test data sets. Conclusions are drawn in
section VI.

II. STREAM LINES AND PATH LINES

We are interested in spatio-temporal characteristics of
a time-dependent vector field vector field v(x, t) defined
in some space-time domain D. In a space-time point
(x0, t0) ∈ D we can start e.g. a path line

d

dt
x(t) = v(x(t), t) with x(t0) = x0 (1)

which may be written equivalently in integral form

x(t) = x0 +
∫ t

t0

v(x(s), s) ds (2)

or a stream line, staying in some time slice t = t0,

d

dτ
x(τ) = v(x(τ), t0) with x(0) = x0 (3)

which reads in integral form

x(τ) = x0 +
∫ τ

0
v(x(s), t0) ds. (4)

The ODE system (1) can be rewritten as an autonomous
system at the expense of an increase in dimension by
one, if time is included as an explicit state variable:

d

dt

(
x
t

)
=

(
v(x(t), t)

1

)
with

(
x
t

)
(0) =

(
x0

t0

)
. (5)

In this formulation space and time are dealt with on equal
footing – facilitating the analysis of spatio-temporal
features. Path lines of the original vector field v in
ordinary space now appear as stream lines of the vector
field

p(x, y, t) =
(
v(x, t)

1

)
(6)

in space-time. To treat streamlines of v, one may simply
use

s(x, y, t) =
(
v(x, t)

0

)
. (7)

v(x, y, t) = (1− t) · + t ·

(a) Stream lines of s correspond
to the stream lines in v.

(b) Stream lines of p correspond
to the path lines in v.

Fig. 1. Characteristic curves of a simple 2D time-dependent vector
field shown as illuminated field lines.

This is valid for arbitrary space dimensions. In the
following we restrict our considerations to a 2D time-
dependent vector field

v(x, y, t) =
(

u(x, y, t)
v(x, y, t)

)
. (8)

Figure 1 illustrates s and p for a simple example vector
field v. It is obtained by a linear interpolation over time
of two bilinear vector fields. Note that in all figures
throughout this paper the coordinate system is shown
as follows: red/green coordinate axes denote the (x, y)-
domain, the blue axis shows the time component.

Now the problem of finding a stream line and path
line oriented topology is simply reduced to finding the
topological skeletons of s and p. Unfortunately, neither
for s nor for p the classical vector field topology
extraction techniques for 3D vector fields are applicable:
s consists of critical lines while p does not have any
critical points at all. Sections III and IV show how to
treat their topological skeletons.

For 2D time-dependent vector fields there are also
other classes of characteristic curves, namely streak lines
and time lines. A streak line is the location of all
particles set out at different times but the same location.
Considering the vector field p introduced above, streak
lines can be obtained in the following way: apply a
stream surface integration in p where the seeding curve
is a straight line segment parallel to the t-axis, a streak
line is the intersection of this stream surface with a plane
perpendicular to the t-axis (Figure 2a). A time line can
be obtained by applying a stream surface integration in
p starting at a line with t = const., and intersecting it
with a plane perpendicular to the t-axis (Figure 2b).
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(a) Streak lines of v. (b) Time lines of v.

Fig. 2. Characteristic curves of a simple 2D time-dependent vector
field. Seeding curves and resulting stream surfaces are colored red.
Same data set as in Figure 1.

Both streak and time lines fail to have a property of
stream and path lines respectively: they are not locally
unique, i.e. for a particular location and time there is
more than one streak and time line passing through.
Hence they cannot be described as stream lines of a
certain 3D vector field. Because of this we restrict
ourselves to stream line and path line oriented topology
here.

III. STREAM LINE ORIENTED TOPOLOGY

Stream line oriented topology is well-understood in
the visualization community ([21], [22], [23]). In ad-
dition to tracking the topological features over time,
bifurcations have to be extracted. Bifurcations are the
events of structural changes of the flow behavior at a
certain time. We first review the most important concepts
and approaches for their visualization (section III-A)
before we introduce new methods to detect certain global
bifurcations: saddle connections (III-B) and cyclic fold
bifurcations (III-C).

A. Concepts and previous work

Critical points are important topological features of
steady vector fields. Tracking their location over time
is necessary for capturing the topological behavior of
v. This is equivalent to extracting the zero lines of s,
where all points on these lines are zero points of v at a
certain time. To do so, one can either extract and connect
the zeros on the faces of an underlying prism cell grid
([16]), or a feature flow field integration from a start zero
point of s is applied. The feature flow field for tracking
critical points is a 3D vector field f which points into the
direction where all components of s remain unchanged.
[19] shows that

f(x, y, t) =

det(vy,vt)
det(vt,vx)
det(vx,vy)

 . (9)

(a) Critical lines of s, LIC plane
through Hopf bifurcation.

(b) Separation surfaces created
by the moving saddle.

Fig. 3. Topological visualization of a simple 2D time-dependent vec-
tor field consisting of sink, source, saddle, fold and Hopf bifurcation
– one of each type.

Starting a stream line integration of f from a point x0

with s(x0) = (0, 0, 0)T , all points x on this stream line
fulfill s(x) = (0, 0, 0)T as well. Here we prefer the
feature flow field approach to extract the critical lines
of s since it does not depend on an underlying grid.

To extract all critical lines of s, an appropriate number
of start points is needed. We get them by considering
all critical points at the boundaries of the domain of s
(which can easily be obtained as critical points of 2D
vector fields) and by additionally considering all fold
bifurcations of v. A fold bifurcation appears if at a
certain time t a critical point appears and in the same mo-
ment splits up to a saddle and source/sink/center.1 Fold
bifurcations can be found as the zeros of the following
system of equations: [u = 0, v = 0, det(vx,vy) = 0].
This refers to local extrema of the t-values on the critical
lines. To solve this system for isolated (x, y, t), we use a
simple subdivision approach similar to detecting isolated
critical points in 3D vector fields: a cell C in the domain
is checked whether one of the components (u, v, or
det(vx,vy)) is positive at all 8 vertices of C (or whether
one component is negative at all vertices). If so, no
fold bifurcation is found in C. Otherwise we recursively
subdivide C into 8 subcells until their size is smaller
than a certain threshold. The results are clusters of small
cells which represent the isolated fold bifurcations.

Another important class of local bifurcations are Hopf
bifurcations denoting locations where a sink becomes
a source or vice versa. Thus, this denotes the location
of a center, i.e. a critical point with a vanishing diver-
gence and a positive Jacobian. Hopf bifurcations can
be extracted similar to fold bifurcations by numerically
solving the system [u = 0, v = 0, div(v) = ux + vy =
0] for (x, y, t) and selecting all isolated solutions with
positive Jacobian.

Another part of the topological skeleton of v are
the separation curves starting from saddle points. It is
a well-known fact that a saddle of a 2D vector field
creates 4 separation curves by starting the integration

1Or the other way around: a saddle and a source/sink/center
collapse and disappear.
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(a) Shortly before. (b) The event. (c) Shortly after.

Fig. 4. Saddle connection bifurcation.

into the directions of the eigenvectors of the Jacobian
matrix. While the saddle moves over time in v, their
sweepings form 4 stream surfaces dividing s into areas of
different flow behavior. Figure 3 gives an illustration of
a simple vector field containing all topological features
mentioned above. In this figure (as well as in the
following figures) we use the following color coding:
the critical lines of s are color coded according to the
inflow/outflow behavior of the represented critical points
in v: a red/blue/green/yellow line segment represents a
source/sink/center/saddle critical point respectively. The
same color coding is used for particular critical points
which are visualized as small spheres. This means that a
Hopf bifurcation is shown as a small green sphere. Fur-
thermore, fold bifurcations are shown as gray spheres,
while particular stream lines of s are shown as gray
lines. For integrated separation surfaces we color code
according to the integration direction as red (forward
integration) or blue (backward integration) surfaces.

B. Detecting saddle connections

Saddle connections are global bifurcations which ap-
pear when two separatrices starting from saddle points
coincide, i.e. when a separatrix of one saddle ends
in another saddle. Figure 4 illustrates an example. We
are not aware of pre-existing solutions to extracting all
saddle connections of v for visualization purposes.

The solution we propose here is an adaption of the
saddle connectors approach [14] which recently has
been introduced to visualize topological skeletons of
3D steady vector fields.2 Saddle connectors are the
intersection curves of the separation surfaces of a 3D
vector field starting in the outflow and inflow planes
of the saddle points. The basic idea is to numerically
integrate two separation surfaces until an intersection is
found. After some refinement, a stream line is integrated
from the intersection point both in forward and backward
direction. Figure 5 illustrates the idea of saddle connec-
tors, details about implementation, accuracy and speed
are in [14].

2Note the nice coincidence of concepts: saddle connections (of
2D time-dependent vector fields) are extracted using an adaption of
saddle connectors (for 3D steady vector fields).

(a) Separation surfaces of
the saddles.

(b) Their intersection
curve is the saddle
connector.

Fig. 5. Definition of saddle connectors for 3D vector fields.

(a) Separation surfaces starting
from critical lines of s.

(b) Saddle connection as the
intersection of these
surfaces.

Fig. 6. Extracting saddle connections.

Now the idea of saddle connectors can be modified
to detect saddle connections in s: instead of starting the
integration of one separation surface at each saddle of a
3D vector field, we start in the critical lines of s which
represent a moving saddle. In fact, we start four stream
surface integrations3 at the critical lines of s into the
directions of the eigenvectors of the Jacobian matrix.
The rest of the algorithm is similar to saddle connectors
and yields all saddle connections in v. Figure 6 gives an
illustration.

A special case of saddle connections is the so-called
periodic blue sky bifurcation ([22]) where two separa-
trices of the same saddle coincide. Our algorithm to
extract saddle connections automatically extracts these
bifurcations as well. Figure 7 illustrates this.

C. Tracking closed streamlines

Closed stream lines are global topological features
which evolve over time in v. Several bifurcations can
occur: a closed stream line may appear or disappear,
or two closed stream lines may collapse and disappear.
The latter case is called cyclic fold bifurcation and is
illustrated in figures 8 and 10.

A first approach to track closed stream lines was
proposed in [16]: closed stream lines are extracted in
different time levels, and corresponding stream lines in

3Two forwards and two backwards.
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(a) Critical lines of s and two
LIC planes.

(b) Separation surfaces shortly
after their intersection.

(c) Two separation curves of the
same saddle coincide; the
intersection with the yellow
line is the location of the
saddle creating the
bifurcation.

(d) Tracked closed stream line
starting from Hopf
bifurcation.

Fig. 7. Periodic blue sky bifurcation.

Fig. 8. Cyclic fold bifurcation: two closed stream lines move towards
each other (a and b), merge (c) and disappear (d).

adjacent time levels are connected. The results are tube-
shaped surfaces starting/ending in Hopf bifurcations,
periodic blue sky bifurcations, or at the boundaries of the
domain. This approach depends on the underlying grid
structure and does not consider cyclic fold bifurcations.

We present a new solution for tracking closed stream
lines without these restrictions. This section describes
the primary part of the algorithm by assuming a starting
closed stream line is already given. How to obtain such
a starting line is explained in the next section.

Our new approach follows the general idea of feature
flow fields [19]. Suppose we already have a closed
stream line ci. We would like to construct a 3D vector
field g such that the evolution of ci over time can simply
be obtained by a stream surface integration of g starting
at ci. Unfortunately, such a feature flow field g cannot
locally be derived from s, since the evolution of a closed
stream line is a global process. But the basic principle of
feature flow fields can be reduced to this: given ci, we
want to find an adjacent closed stream line ci+1 within a
certain distance d from ci. Furthermore, d shall refer to
the (x, y, t)-domain, i.e. we do not make any assumption

(a) Setup for starting at Hopf
bifurcation.

(b) Seeding curves h1 and h2

for finding the closed stream
line ci+1.

(c) Intersecting stream surfaces
evolving from h1.

(d) Detected connector is ci+1.

Fig. 9. Tracking closed stream lines.

whether the t-value of ci+1 is before, after, or at the same
t-value as ci. Note that a (closed) stream line is uniquely
defined by a single point on it. Hence, we only have to
construct a point xi+1 on ci+1 with a certain distance
from a point xi on ci. To achieve this, we again apply
an adaption of the concept of saddle connectors [14].

We describe one step of our algorithm now (Figures
9b-d). Given two adjacent closed stream lines ci−1 and
ci together with their defining points xi−1 and xi (Figure
9b), we want to find a point xi+1 which defines the next
closed stream line ci+1. To do so, we consider a plane
through xi perpendicular to s(xi) and place a circle k
around xi with the radius d into this plane: every point
on k represents a certain step in space-time. It is easy
to see, that if ci+1 is actually existing, then xi+1 ∈ k
is fulfilled. Since we assume the closed stream line to
evolve continuously, we search xi+1 only on a circular
arc k̂ ⊂ k consisting of all points x ∈ k with (x −
xi)(xi − xi−1) > 0 (Figure 9b). This ensures, that the
algorithm does not run back to ci−1. Anyway, if ci−1

is not given we have k̂ = k. k̂ is further subdivided by
cutting along the t-direction into two arcs h1 and h2.4

They act as seeding curves of a stream surface integration
of s in both forward and backward direction (Figure 9c).

4The splitting of k̂ into h1 and h2 is necessary to ensure that
each found intersection is a closed stream line. If we would start the
integration on k̂, the intersection curves could be stream lines starting
and ending in different points, i.e. not closed stream lines, since two
points on k̂ may have the same t-value.
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(a) Stream surface describing
closed stream lines. Cyclic
fold bifurcation is detected
on top of this surface (gray
line).

(b) Intersection of stream
surface with LIC plane.
Compare with Figure 8b.

Fig. 10. Detecting a cyclic fold bifurcation.

Similar to the saddle connector approach, we detect the
intersection of these stream surfaces: it describes a closed
stream line (Figure 9d).

Assuming length(h1) ≥ length(h2), we first apply the
stream surface integration starting in h1. This is encour-
aged by the fact that the direction of the closed stream
line’s evolution in this step is unlikely to differ much
from the previous direction. Our experience shows that
this yields much faster execution times. If an intersection
curve is found, this is the new closed stream line ci+1;
its intersection with h1 gives xi+1. If no intersection is
found, we check h2 in a similar way. If this gives no
result either, the algorithm stops.

After extracting a sequence of closed stream lines,
there are two ways for extracting the stream surface
describing them. One is to use the curve [x0, . . . ,xn]
as a seeding line for another stream surface integra-
tion. However, since we already extracted a number
of closed stream lines, we use them to triangulate the
strips between each adjacent ci and ci+1. The result is a
triangular mesh representing a stream surface describing
the evolution of a closed stream line in space-time.

Figure 10 shows an example of a tracked closed stream
line starting at a Hopf bifurcation. We see the sequence
of defining points xi as well as the searching arcs h1 and
h2 in every step. This example shows that the algorithm
can deal with cyclic fold bifurcations: it appears at the
closed stream line ci if (ti− ti−1)(ti+1− ti) ≤ 0 (where
ti is the t-component of the points on ci). The example
in Figure 10 has one cyclic fold bifurcation (gray line).

Another example is shown in figure 7d, where a Hopf
and a periodic blue sky bifurcation have the same t-
value. It turns out that the closed stream line completely
evolves in the same time-slice. This is an example where
tracking approaches fail which are based on extracting
and connecting closed stream lines in fixed time steps.

The numerical integration of the seeding line
[x0, . . . ,xn] has the advantage that numerical errors are

11. A closed stream
line touching the
boundary of the
domain is obtained
by intersecting stream
surfaces of s starting
from the boundary
switch curves.

not inherited: if due to numerical errors xi is located a
little bit away from a closed stream line, xi+1 can still
be found correctly.

D. Initial conditions for tracking closed streamlines

To complete the algorithm of tracking closed stream
lines, we still have to find a system of initial closed
stream lines, i.e. closed stream lines where the tracking
described in section III-C starts or ends. This system of
initial stream lines has to be chosen in such a way that
all closed stream lines are guaranteed to be tracked. To
do so, we choose all events where a closed stream line
appears or disappears. These events are:

• Hopf bifurcations.
• Periodic blue sky bifurcations.
• Closed stream lines at the first or last time step.
• Closed stream lines touching the boundary of the

domain and appearing/disappearing subsequently.
At a Hopf bifurcation x0, we start the integration in a
semi-circle around x0 which lies in the plane defined
by (0, 0, 1)T and (0, 0, 1)T × f(x0), where f is the
feature flow field for tracking critical points (9). Figure
9a illustrates this. At a periodic blue sky bifurcation, we
take any point on the stream line as starting point x0.
Setting k̂ as the full circle k, the rest of the integration
step is as described above.

To detect closed stream lines at the first and last time
step of v means to detect all closed stream lines in
2D steady vector fields. [24] shows that this problem
is analogous to intersecting certain stream surfaces in a
3D vector field. Based on this, [24] presents an algorithm
to detecting all closed stream lines in a 2D steady vector
field.

To find closed stream lines touching the boundary of
the domain of v, we extract the boundary switch curves
([15]) of s. From these lines we start a stream surface
integration of s both in backward and forward direction.
Their intersections indicate a closed stream line touching
the boundary of the domain of s. Figure 11 gives an
illustration.
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IV. PATH LINE ORIENTED TOPOLOGY

Constructing a path line oriented topology means
to consider the stream lines of p (cf. equation (6))
and segment p into regions of different flow behavior.
Although an extensive research about extracting char-
acteristic structures of path lines ([25], [26]) and local
fluid particle motion ([27]) has been done in the fluid
dynamics community, topological approaches of path
lines have not been used as a visualization tool yet.

A. Definition of path line oriented topology

Given a 3D vector field w, it is a well-known fact that
a number of local properties (like acceleration, shear,
curvature, convergence and others) can be computed by
a local analysis of the Jacobian matrix Jw ([27]). The
usual approach to compute them is a decomposition of
Jw together with introducing a local coordinate system.
These properties also have been used in icon-based
visualization tools for 3D vector fields [28]. The local
properties of w can be divided into two groups: the first
group consist of pure directional properties of the stream
lines of w, i.e. they are invariant under scalings of w.
The second group consists of properties which depend
both on the length and the direction of w.

The basic approach we use here is to exploit local
properties of a 3D vector field to get a segmentation of p.
Since a topological skeleton should only depend on the
direction of the stream lines, we focus here on properties
of the first group. In fact, we aim at segmenting p into
areas of attracting, repelling, or saddle like behavior of
the stream lines of p.

Consider a point x0 with its corresponding vector
p(x0) defining a stream line `0 in p starting at x0. We
consider a small circle k0 around x0 in the plane per-
pendicular to p(x0). Considering all stream lines ` in p
starting in k0, three stable cases are possible concerning
their convergence/divergence behavior towards `0:

• All ` converge towards `0 under forward integration.
• All ` move away from `0 under forward integration.
• Stream lines with both converging and diverging

behavior exist (saddle-like behavior).
Figure 12 illustrates these cases.

To compute this classification as a local property of
x0, we transform p into a local coordinate system such
that the new origin is x0 and the new base vectors
b1,b2,b3 are

b3 =
p(x0)
‖p(x0)‖

, b1 =
(0,−1, v)T

√
1 + v2

, b2 = b3 × b1. (10)

Note that b1 is chosen to be non-zero and perpendicular
to b3. Any other choice of b1 fulfilling these demands

(a) Attracting. (b) Repelling. (c) Saddle-like.

Fig. 12. Behavior of stream lines of p starting on a circle k around
x0.

is possible as well. Since we are only interested in
local properties perpendicular to the flow direction, we
consider the plane e through x0 defined by b1 and b2,
and project the vectors p(e) into e. Doing so we get
a 2D vector field q in e which has a critical point in
x0. Figure 13a illustrates the definition of q. To get the
flow behavior of p in x0, we can classify x0 in q by
an eigenvalue analysis of the Jacobian matrix Jq of q at
x0. Computing the eigenvalues e1, e2 of Jq(x0) we get
by a straightforward exercise in algebra

e1 e2 =
det(p, grad(u), grad(v))

p2
(11)

e1 + e2 = ‖p‖ · div
(

p
‖p‖

)
(12)

where grad(u) = (ux, uy, ut)T and grad(v) =
(vx, vy, vt)T are the gradients of the u- and v-
components respectively. 5

To separate regions where p has a saddle-like be-
havior, we extract the isosurface e1 e2 = 0: areas with
e1 e2 < 0 reveal a saddle-like behavior. In figure 13b
as well as in the following visualizations of path line
oriented topology, these surfaces are shown in a tan
color. In areas with e1 e2 > 0 we further check whether
a complete attracting or repelling behavior is present.
We do so by extracting and visualizing the isosurface
e1 + e2 = 0: e1 + e2 > 0 denotes repelling behavior
while e1 + e2 < 0 gives attracting behavior of p. We
visualize this surface in a green color. Figure 13b shows
a simple example of p consisting of one attracting, one
repelling and one saddle-like sector.

Note that this segmentation of p can also be achieved
by considering the Gaussian and mean curvature of a sur-
face z through x0 with all its normals in the direction of
p: a saddle-like behavior of p corresponds to a negative

5Instead of eqn. (10) we can also use the local Frenet frame as a
local coordinates system. However, since we apply only an eigenvalue
analysis of the Jacobian matrix perpendicular to the flow direction,
the results (11) and (12) are the same.
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(a) Finding the projected vector
field q.

(b) Example of p consisting of
three sectors.

Fig. 13. Computing path line oriented topology.

Gaussian curvature of z, a repelling/attracting behavior
corresponds to a positive/negative mean curvature.

B. Properties of path line oriented topology

In this section we collect properties of the path line
oriented topology introduced above. First we show that
stream lines and path lines can have a significantly
different flow behavior leading to the fact that stream
line and path line oriented topology reveal different
characteristics of the flow. Consider the simple vector
field

v(x, y, t) =
(

1 + 6 t
y

)
(13)

in the domain [−1, 1]3. Analyzing the behavior of stream
lines and path lines at the location (0, 0, 0) in space-time,
we obtain a diverging behavior of the stream lines. Figure
14a illustrates the seeding of a stream surface of s at a
small circle around (0, 0, 0) in the plane perpendicular
to s(0, 0, 0). In addition, a LIC plane through (0, 0, 0)
shows the diverging behavior. Contrary to this, the path
lines through (0, 0, 0) reveal a saddle-like behavior, as
shown in figure 14b. Here the seeding line is a small
circle in the plane perpendicular to p(0, 0, 0).

Contrary to the stream line oriented topology, the path
line oriented topology is not invariant under scalings of
v. In fact, the path lines of two vector fields v(x, y, t)
and c · v(x, y, t) with c > 0 and c 6= 1 differ. The factor
c influences the impact of the temporal changes with
respect to the spatial changes. For large c, the flow is
dominated by the spatial changes. For c → +∞, the
stream lines of p converge to the stream lines of s.

Note that the isosurfaces e1 e2 = 0 and e1 + e2 = 0
separating different sectors in p are not stream surfaces
of p. This means that – contrary to stream line oriented
topology – a stream line in p can travel through sectors
of different flow behavior.

(a) Stream lines show a
diverging behavior.

(b) Path lines show a saddle-like
behavior.

Fig. 14. Behavior of stream and path lines in the example vector
field of eqn. (13) at (0, 0, 0). As a reference, a red-colored copy of the
seeding circle has been transported to the end of the stream surfaces.
Comparing them with the front lines of the surfaces elucidates the
behavior of the flow.

The path line oriented topology introduced above uses
the concept of topology in a slightly different way than
usually done. The classical understanding of topology is
to observe how stream lines behave under an integration
”until infinity”, while our method only considers local
properties of the path lines. However, since our approach
also aims in segmenting the domain into areas of differ-
ent flow behavior, we call it a topological approach as
well.

V. APPLICATION AND RESULTS

We applied stream line oriented and path line oriented
methods to a number of test data sets. Not surprisingly,
not all topological features appear in all data sets, and
different topological features turned out to be important
for different data sets.

Figures 15 and 16 show a stream line oriented topo-
logical visualization of a random 2D time-dependent data
set on a 5× 5× 5 grid. Random vector fields are useful
tools for a proof-of-concept of topological methods,
since they contain a maximal amount of topological
information. Figure 15a shows LIC images of the vector
field at three different time slices which already indicates
a high topological complexity. Figure 15b shows parts
of the stream line oriented topological skeleton. We
detected 18 critical lines of s (shown in red/blue/yellow,
according to their outflow/inflow/saddle behavior), 32
fold bifurcations (gray spheres), and 4 Hopf bifurcations
(green spheres). In this figure we also included two LIC
planes to illustrate the relation between the critical lines
of s and the critical points of v. In addition, figure
15c shows 8 detected saddle connections, among them
4 periodic blue sky bifurcations. We visualized them as
red/blue double flow ribbons describing the orientation
of the intersecting separation surfaces which create them.
Starting from the Hopf bifurcations, we tracked the
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(a) LIC images at 3 different time slices. (b) Tracking the locations of critical points
as stream lines (red/blue/yellow); local
bifurcations: Hopf bifurcations (green
spheres), fold bifurcations (gray spheres).

(c) Global bifurcations: saddle connections
(red/blue flow ribbons), tracked closed
stream lines (green surfaces).

Fig. 15. Test data set: Stream line oriented topology of a 2D time-dependent vector field.

Fig. 16. Test data set: Closeup of a tracked closed stream line.

closed stream lines of s: each closed stream line starting
in a Hopf bifurcation turned out to end in a periodic
blue sky bifurcation. The resulting surfaces are shown in
green. Figure 16 shows a detail of figure 15c to illustrate
the tracking of closed stream lines: also shown are the
seeding arcs for each step of the integration.

The computing time for extracting the saddle con-
nections in this example was 20 seconds on a Pentium
4 1.7 GHz. For this, 42 attracting and 42 repelling
stream surfaces had to be integrated and checked for
intersections. For tracking the closed stream lines, our
algorithm took 14 seconds on the same hardware. For
this, 52 steps of the described algorithm had been carried
out.

Figure 17 shows the visualization of a 2D time-
dependent flow behind a circular cylinder. The cylinder
is in the (x,y) plane around the origin of the underlying
coordinates system. This data set was kindly provided
by Gerd Mutschke (FZ Rossendorf) and Bernd R. Noack

(TU Berlin). Figures 17a and 17b show the stream lines
of s and p as illuminated stream lines [29]. As we
can see in figure 17a, this incompressible flow does not
contain critical points (except for a center and a saddle
directly behind the cylinder). This means that stream
line oriented techniques fail for this data set. However,
path line oriented techniques are still applicable. Figure
17e shows the path line oriented skeleton which re-
veals quasi-periodic structures behind the cylinder. These
structures move slowly away from the cylinder over
time. They correspond to the well-known von Kármán
vortex street. To make this data set applicable to stream
line oriented techniques, we subtract a constant vector
field6 which leads to the appearance of critical points.
Figure 17c shows the stream line oriented skeleton of this
modified data set which consists of 47 critical lines and
13 fold bifurcations. Note that the critical lines appear
only in green and yellow, indicating that only moving
centers and saddles are present. This corresponds to the
fact that the vector field describes an incompressible
flow. Figure 17c also shows that the critical points slowly
move away from the cylinder over time: the critical lines
of s are in general not parallel to the time axis. Figure
17d shows a close-up, where the separation surfaces
emanating from the moving saddles are visualized. As
we can see here, a number of separation surfaces tend to
coincide making it impossible to extract isolated saddle
connections. This is also due to the fact that the vector
field is incompressible.

Figure 17 shows that for our particular data set stream
line and path line oriented topology reveal rather similar

6This trick is well-known in the fluid dynamics community. It is
motivated by the idea that the observer is moving with the flow.
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(a) Stream lines of s correspond to the stream lines in v. (b) Stream lines of p correspond to the path lines in v.

(c) Stream line oriented topology after subtracting a constant vector
field.

(d) Stream line oriented topology with separation surfaces
(close-up).

(e) Path line oriented topology.

Fig. 17. 2D Flow behind a circular cylinder.

structures. We see the reason of this in the fact that
the temporal changes in this data set are marginal in
comparison to the spatial changes which dominate this
flow.

Figure 18 shows the visualization of a vector field
describing the flow over a 2D cavity. This data set was
kindly provided by Mo Samimy and Edgar Caraballo

(both Ohio State University) [30] as well as Bernd R.
Noack and Ivanka Pelivan (both TU Berlin). 1000 time
steps have been simulated using the compressible Navier-
Stokes equations; it exihibits a non-zero divergence
inside the cavity, while outside the cavity the flow tends
to have a quasi-divergence-free behavior. The topological
structures of the full data set visualized in Figure 18a
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(a) 1000
time
steps.

(b) Stream line oriented topology of the first 100 time steps. (c) Path line oriented topology of the first 100 time steps.

(d) Tracked closed stream line starting and ending in a Hopf
bifurcation. Tracking from both sides yields the same
result as shown by the searching arcs k̂ (section III-C).

(e) Detail view with a saddle connection and a fold
bifurcation.

Fig. 18. 2D time-dependent flow at a cavity. The datasets consists of 1000 time steps which have been visualized in (a). All other images
show the first 100 time steps.

elucidate the quasi-periodic nature of the flow. Figures
18b-c show approximately one period – 100 time steps –
of the full data set, while Figures 18d-e point out some
topological details.

Figures 18b-c both reveal the overall movement of
the topological structures – the most dominating ones
originating in or near the boundaries of the cavity itself.
The quasi-divergence-free behavior outside the cavity is
affirmed by the fact that a high number of Hopf bifur-

cations has been found in this area. The tracked closed
stream line in Figure 18d starts in a Hopf bifurcation and
ends in another one – thereby enclosing a third Hopf.
Our algorithm tracked it starting from both sides. The
searching arcs k̂ as well as both resulting seeding lines
[x0, . . . ,xn] have been visualized to show the paths that
have been taken by our method. Figure 18e shows a
detailed view of time step 22, where a saddle connection
has been detected. In the front of this figure a sink is
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going to join and disappear with a saddle, which just
happened to enter at the domain boundary.

VI. CONCLUSIONS

In this paper we made the following contributions:
• We introduced an approach to extracting all saddle

connections of a 2D time-dependent vector field.
• We introduced an approach to track closed stream

lines which is robust against cyclic fold bifurca-
tions.

• We introduced an approach to a path line oriented
topology by distinguishing sectors of attracting,
repelling and saddle-like behavior of the path lines.

The application to a number of test data sets shows that
stream line and path line oriented topology reveal differ-
ent structural properties of vector fields. While the stream
line oriented topology is dominated by the presence and
movements of critical points, path line oriented topology
can be interpreted as focusing on mixing properties of
a flow: areas with a saddle-like behavior of the path
lines indicate a good mixing property of the flow over
time. In particular, path line oriented topology also gives
a segmentation in areas where a stream line oriented
topology fails due to the absence of critical points.

While a stream line oriented topology is focused on
analyzing the behavior of an integration until infinity,
our path line oriented approach exclusively treats local
properties of path lines. As future research we intend to
explore approaches which are based on the behavior of
the path lines over certain (limited) time intervals.

ACKNOWLEDGMENT

We thank Bernd R. Noack and Ivanka Pelivan for
the fruitful discussions and the supply of simulation
data sets which were kindly provided by Gerd Mutschke
(cylinder) as well as Mo Samimy and Edgar Caraballo
(cavity).

All visualizations in this paper have been created using
AMIRA – a system for advanced 3D visualization and
volume modeling [31] (see http://amira.zib.de/).

REFERENCES

[1] J. Helman and L. Hesselink, “Representation and display of
vector field topology in fluid flow data sets,” IEEE Computer,
vol. 22, no. 8, pp. 27–36, August 1989.
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