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Abstract

In this paper we extract and visualize the topological skeleton of two-parameter-dependent vector fields. This kind
of vector data depends on two parameter dimensions, for instance physical time and a scale parameter. We show
that two important classes of local bifurcations – fold and Hopf bifurcations – build line structures for which we
present an approach to extract them. Furthermore we show that new kinds of structurally stable local bifurcations
exist for this data, namely fold-fold and Hopf-fold bifurcations. We present a complete classification of them.
We apply our topological extraction method to analyze a number of two-parameter-dependent vector fields with
different physical interpretations of the two additional dimensions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Line and Curve Genera-
tion I.3.3 [Computer Graphics]: Picture/Image Generation

1. Introduction

Topological methods have become a standard tool in
vector field visualization. Initially introduced as a vi-
sualization tool in [HH89], topological methods have
been extended to higher order critical points [SKMR98],
boundary switch points [dLvL99], and closed sep-
aratrices [WS01]. In addition, topological methods
have been applied to smooth [WJE01], compress
[LRR00, TRS03] and model [The02, WTHS04b] vec-
tor fields. The topology of 3D vector fields is visualized in
[GLL91, LDG98, MBS∗04, TWHS03, WTHS04a].

The main idea of topological methods is to segment the
domain into areas of different flow behavior. To do so, crit-
ical points are extracted and classified. Starting from saddle
points, separation curves/surfaces are integrated. The union
of critical points and separatrices is called topological skele-
ton. Concerning vector fields v(x, t),x ∈ IRn depending on
one parameter t (like e.g. time-dependent flows), critical
points move with changing t. In fact, they form line struc-
tures in IRn+1. Furthermore, critical points might appear or
disappear at some t. Those births and deaths of critical points
are called fold bifurcations and their occurence changes the
topological behavior of the field abruptly: two critical points

of opposite index collapse and disappear (or the other way
around: a critical point appears and splits up into two critical
points immediately). Knowing the locations of these events
is a key to understanding the dynamics of the data. Another
important structural change is denoted by a spiraling source
changing to a spiraling sink or vice versa. This is called a
Hopf bifurcation. Other types of local bifurcations (Tran-
scritical and Pitchfork bifurcation) are possible, but struc-
turally unstable [GH86] – we therefore do not treat them
here.

This paper aims at extracting all locations of all critical
points of vector fields v(x,s, t) depending on two parame-
ters. Critical points move with changing s and t and form sur-
face structures now. Consequently, bifurcation points move
as well and form line structures in IRn+2. This creates new
types of structurally stable bifurcations: births and deaths of
fold or Hopf bifurcations themselves. We call them fold-fold
and Hopf-fold bifurcations. Those events are isolated points
in IRn+2. See Table 1 for an overview of the dimensionality
of topological features. A detailed introduction to the theory
of local bifurcations of vector fields v(x,s, t) can be found
in [GH86]. In particular, local codimension two bifurcations
are studied there. Guckenheimer and Holmes give a thor-
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Feature v(x, t) v(x,s, t)
critical points curves surfaces
fold / Hopf bifurcations points curves
fold-fold / Hopf-fold bifurcations n/a points

Table 1: Dimensionality of topological features for vector
fields depending on one or two parameters.

ough overview of the unfoldings of those bifurcations. The
bifurcations we treat here fit into this scheme, but we dis-
tinguish between line-type and point-type bifurcations here.
We do so, since this allows a better description of the struc-
tural changes inherent to the flow.

Vector fields of the form v(x,s, t) can be found in a num-
ber of applications, two of them shall be mentioned here:

• Multiscale Techniques: Simplification [dLvL99]
[TSH01a] and smoothing [BP02, KE05] lead to repre-
sentations of vector fields at different scale levels. If the
transition between them is smooth, we have a scale-space
representation of the data, smoothly changing from the
original data to a strongly simplified/smoothed version. If
those techniques are applied to time-dependent flows, we
end up with two-parameter-dependent vector fields.

• Flow Optimization: The flow around an airfoil is sub-
ject to large efforts in order to increase the desired lift and
to reduce the parasitic drag. These performance enhance-
ments are achieved by changing the geometry (aerody-
namic design) of the airfoil and controlling separation us-
ing air injection. Both strategies introduce additional pa-
rameters like position and size of gurney flaps or ampli-
tude and phase of air injection. Being able to extract the
topology of flows with more than one parameter aids in
understanding the intricate flow structures.

There is a large amount of research on extracting the topo-
logical skeleton of one-parameter-dependent vector fields
v(x, t), e.g., tracking critical points in time-dependent flows.
Two main approaches exist: based on a local connection
strategy exploiting the underlying grid [TSH01b, GTS04],
or based on a stream line integration in a derived vector field
– the so-called feature flow field (FFF) [TS03, WTHS05].
Both approaches have their strengths and weaknesses, mak-
ing the choice of the appropriate one depending on the par-
ticular application.

In this paper we present an algorithm to extract the loca-
tions of all critical points of two-parameter-dependent vector
fields v(x,s, t). As part of this, we obtain the locations of fold
and Hopf bifurcations as well as their births and deaths. Our
algorithm is based on the feature flow field approach [TS03],
which additionally provides the tools to completely classify
fold-fold and Hopf-fold bifurcations. In this paper we treat
2D vector fields depending on two additional independent
variables, i.e., vector fields of the form v(x,y,s, t).

The rest of the paper is organized as follows: section 2
recalls topological visualization approaches for time-depen-
dent vector fields. Section 3 explains the visualization and
critical point tracking in two-parameter-dependent fields.
Section 4 presents an approach to tracking fold bifurcations.
Section 5 introduces and classifies fold-fold bifurcations.
Section 6 treats the tracking of Hopf bifurcations. Section
7 describes implementational details. In Section 8 we apply
our technique to a number of test data sets, while conclusions
are drawn in section 9.

2. One-Parameter-Dependent Vector Fields

Topological features of one-parameter-dependent vector
fields (e.g. time-dependent) are well-understood in the vi-
sualization community. They can be classified into local and
global features [TWHS05]. In this section, we give a short
overview over local topological features, focusing on 2D
fields. Given a 2D time-dependent vector field v(x,y, t), the
locations of the critical points form line structures in the 3D
space-time domain. To extract them, we use the FFF ap-
proach [TS03] which consists of two steps: first, a 3D vector
field f is constructed which fulfills the FFF property, i.e., the
locations of the critical points of v are stream lines of f. This
way, the tracking of critical points in v can be carried out as
a simple stream line integration of f. [TS03] shows that

f(x,y, t) =

 det(vy,vt)
det(vt ,vx)
det(vx,vy)

 . (1)

Second, a set of seeding points is extracted which guaran-
tees that all locations of critical points of v are covered by
a stream line integration of f. [TWHS05] shows that two
classes of points together fulfill this: critical points of v at
the boundaries of the space-time domain, and the fold bifur-
cations.

Fold bifurcations can be found as the solutions of the fol-
lowing system of equations: [v = 0 , det(vx,vy) = 0]. Two
kinds of fold bifurcations exist: a birth and a death event. To
distinguish them, we consider the sign of (∇f · f).3 describ-
ing the third component of the directional derivative of f in
the direction of f at the location of the fold bifurcation. If
(∇f · f).3 > 0, we have a birth event, while (∇f · f).3 < 0 de-
notes a death event. (∇f · f).3 = 0 gives a structurally unsta-
ble event (i.e., an event which disappears under adding noise
to v) and is not considered here. We call this discrimination
of fold bifurcations into births or deaths the BD classifica-
tion. In the following sections we will extend the BD classi-
fication for the use with two-parameter-dependent fields.

Hopf bifurcations can be extracted by solving the system
[v = 0 , div(v) = ux + vy = 0] for (x,y, t) and selecting all
isolated solutions with a positive Jacobian of v.

To visualize the locations of the critical points, we con-
sider the 3D space-time domain. Figure 1a gives an example
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Figure 1: (a) Critical points in a one-parameter-dependent
vector field including a fold and a Hopf bifurcation (gray
/ green point). (b) Visualizing a two-parameter-dependent
vector field by interactively moving s.

showing the vector field at a certain time using a LIC im-
age. In addition, the paths of the critical points are shown as
colored 3D curves: a yellow curve denotes a moving saddle
point, a red/blue curve denotes moving sources/sinks. The
green point is a Hopf bifurcation, while the gray point shows
the location of a fold bifurcation. The red/green coordinate
axes correspond to spatial directions, while the blue axis de-
notes time.

3. Two-Parameter-Dependent Vector Fields

Two-parameter-dependent 2D vector fields shall be written

v(x,s, t) = v(x,y,s, t) =
(

u(x,y,s, t)
v(x,y,s, t)

)
(2)

where x,y represent the spatial and s, t denote the additional
dimensions of the domain. In fact, s can be considered as the
scale-space parameter while t serves as the physical time pa-
rameter, but other interpretations of s, t are possible as well.
For the further explanation of the concepts, we distinguish
two domains of v: the 2D spatial subdomain D with fixed s
and t, and the full 4D domain D̃. For the sake of simplic-
ity, we consider D = [xmin,xmax]× [ymin,ymax] and mention
that our algorithms work for more general domain bound-
aries as well. Furthermore, we choose D̃ = D× [smin,smax]×
[tmin, tmax]. In the following we write v,w, ... for 2D vector
fields but ṽ, w̃, ... for 4D vector fields in D̃.

The locations of the critical points of v build surface struc-
tures in D̃. Before we discuss their extraction (section 3.2),
we explain our approaches to visualizing them (section 3.1).

3.1. Visualizing Critical Points in D̃

4D surface structures are challenging objects for an expres-
sive visual representation. We use three approaches:

• Interactively changing s and t: a point (s, t) is interac-
tively moved in the domain [smin,smax]× [tmin, tmax], and
the topological skeleton of v at (s, t) is visualized. Figure
2 does so for 5 different locations (s, t). We refer to this as
(x,y)-visualization.

• Interactively changing s: for a given location s, v is in-
terpreted and visualized as one-parameter-dependent field
v(x, t). In addition, faded-out surfaces starting from the
zero-lines denote the situation in the direct s-past/future.
Figure 1(right) gives an illustration. There, the topological
skeleton for a fixed s consists of a moving saddle (yellow
curve), a moving source (red curve), and a fold bifurca-
tion (gray point). When moving forward/backward in s,
these features change shape and location. This is repre-
sented by the faded-out red/yellow surfaces for the mov-
ing source/saddle, and by the faded-out gray line start-
ing from the fold bifurcation. To avoid cluttered visual-
izations, the faded lines/surfaces can be switched off. We
call this a (x,y, t)-visualization.

• Interactively changing t: similar to the previous ap-
proach, but with a one-parameter-dependent visualization
of v(x,s) for a fixed t. We call this a (x,y,s)-visualization.

Note that although the two latter visualization approaches
give more insight into the topological behavior of v, the first
one is the only one which straightforwardly extends to 3D
vector fields depending on two parameters. In all figures,
we use the following colors for the coordinate axes: red= x,
green= y, yellow= s, blue= t.

3.2. Tracking Critical Points in D̃

Different approaches to tracking critical points of v in D̃ are
possible. A Marching-Cubes- or Marching-Tetrahedra-like
approach can be applied if the underlying grid provides a
piecewise (quadri-)linear vector field. [BP02] uses a similar
approach to tracking 3D vortex core lines over time. Here
we use a FFF-based approach ending up in a 4D stream sur-
face integration. We do so, because the FFF approach is in-
dependent of an underlying grid, and it provides the tool to
detect and classify bifurcations in D̃ (section 5). Since the
searched structures are surfaces in D̃, we need two FFF’s to
track them. Following [TS03] we use

f̃ =


det(vy,vs)
det(vs,vx)
det(vx,vy)

0

 , g̃ =


det(vy,vt)
det(vt ,vx)

0
det(vx,vy)

 . (3)

f̃ tracks a critical point in s (keeping t constant), while g̃
tracks the critical points in t (keeping s constant). We give
the following algorithm to get all seeding structures:

I Extract all critical points on the domain boundaries of D̃,
i.e., all points (x,y,s, t) with [v(x,y,s, t) = 0,E] and E is
one of the 8 expressions x = xmin, x = xmax, y = ymin,
y = ymax, s = smin, s = smax, t = tmin, t = tmax. Here, the
FFF approach of Section 2 can be applied.

II Extract all locations of fold bifurcations in D̃. This can be
done using the new FFF based approach presented in the
following section.

This choice of seeding structures is a direct generalization
of the one-parameter case [TWHS05]. Both I and II yield
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Figure 2: A (BB) fold bifurcation at (x0,s0, t0): shown are
the topological skeleton and the LIC images of v at (s0, t0)
and (s0 ± ε, t0 ± ε). The arrangement of the LIC images
(right) corresponds to the points in the (s, t)-diagram (left).
Starting from (s0, t0) moving forward either in s or in t cre-
ates a splitting of the critical point at (s0, t0).

line structures. Depending on whether one wants to track the
critical points in s or in t one needs to apply a stream sur-
face integration using f̃ or g̃ respectively. The union of both
results yields all locations of all critical points of v in D̃.

4. Tracking Fold Bifurcations

For one-parameter-dependent vector fields, fold bifurcations
are isolated points serving as seeding structures to track
the critical points. In two-parameter-dependent vector fields
they build line structures in D̃. Fold bifurcations occur at
points in D̃ fulfilling

[ v = 0 , det(vx,vy) = 0 ] . (4)

Since f̃.3 = g̃.4 in (3), fold bifurcations occur simultaneously
in s and in t. This means that depending on the signs of
(∇ f̃ · f̃).3 and (∇ g̃ · g̃).4, a fold bifurcation in D̃ can
have 4 different BD classifications: (BB), (BD), (DB), (DD),
where the first letter denotes the BD classification in s and
the second does so in t. Figure 2 illustrates a (BB) fold bi-
furcation. To track the locations of fold bifurcations in D̃, we
apply the FFF approach again. Its two parts are explained in
the following two sections.

4.1. FFF for Tracking Fold Bifurcations

Let h̃ be the 4D vector field in question to track fold bifurca-
tions in D̃. Using the abbreviation

d = det(vx,vy), (5)

h̃ has to point into the direction where v and d remain con-
stant in a local first order approximation. This means that h̃
has to fulfill

[ h̃⊥∇u , h̃⊥∇v , h̃⊥∇d ] (6)

with

∇u =


ux
uy
us
ut

 , ∇v =


vx
vy
vs
vt

 (7)

∇d =


dx
dy
ds
dt

 =


det(vx x,vy) + det(vx,vx y)
det(vx y,vy) + det(vx,vy y)
det(vx s,vy) + det(vx,vy s)
det(vxt ,vy) + det(vx,vyt)

 .(8)

Equation (6) describes a linear system which gives a unique
solution for h̃ (except for scaling):

h̃ =


det(∇u , ∇v , ∇d , i1 )
det(∇u , ∇v , ∇d , i2 )
det(∇u , ∇v , ∇d , i3 )
det(∇u , ∇v , ∇d , i4 )

 (9)

where i1, .., i4, are the columns of the 4× 4 unit matrix.
Equation (9) can be rewritten as

h̃ =


−dy det(vs,vt) + ds det(vy,vt) − dt det(vy,vs)
+dx det(vs,vt) − ds det(vx,vt) + dt det(vx,vs)

−dx det(vy,vt) + dy det(vx,vt) − dt d
+dx det(vy,vs) − dy det(vx,vs) + ds d

 .

(10)

4.2. Starting Points for Integrating h̃

In order to compute the starting points for integrating h̃, we
have to compute the intersection points of the paths of the
fold bifurcations with the 8 boundary surfaces of D̃, i.e., lo-
cations with

[ (4) , E ] (11)

and E is one of the 8 expressions x = xmin, x = xmax, y = ymin,
y = ymax, s = smin, s = smax, t = tmin, or t = tmax. Solving
each of those 8 systems is equivalent to finding isolated crit-
ical points in a 3D vector field. In addition, we have to ex-
tract inner bifurcation points where fold bifurcations appear
or disappear. We call them fold-fold bifurcations and treat
them in the next section.

5. Fold-fold Bifurcations

A fold-fold bifurcation is the event of collapsing and disap-
pearing of two fold bifurcations while moving forward either
in s or in t (or the reverse process: the appearance and split-
ting of two fold bifurcations). Fold-fold bifurcations occur
at points with vanishing third or fourth component of h̃.

There are three kinds of structurally stable fold-fold bifur-
cations. An s-fold-fold bifurcation is characterized by[

(4) , h̃.3 = 0 , h̃.4 6= 0
]
. (12)

A t-fold-fold bifurcation is characterized by[
(4) , h̃.3 6= 0 , h̃.4 = 0

]
. (13)

An s-t-fold-fold bifurcation is characterized by[
(4) , h̃.3 = 0 , h̃.4 = 0

]
. (14)

In order to show that structurally stable solutions in D̃ for all
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three kinds of bifurcations exist, we note that (4) implies that
vx and vy are parallel, i.e., vy = λvx for a certain λ. Inserting
this and d = 0 into (10) gives

h̃.3 = −(λ dx − dy) det(vx,vt)

h̃.4 = (λ dx − dy) det(vx,vs). (15)

This means that an s-fold-fold bifurcation occurs at
[ (4) , det(vx,vt) = 0 ] which is equivalent to

[ v = 0 , g̃ = 0 ] . (16)

A t-fold-fold bifurcation occurs at [ (4) , det(vx,vs) = 0 ]
which is equivalent to[

v = 0 , f̃ = 0
]
. (17)

An s-t-fold-fold bifurcation occurs at [ (4) , λ dx − dy = 0 ]
which is equivalent to

[ v = 0 , dy vx = dx vy ] . (18)

s-fold-fold and t-fold-fold bifurcations can be further
classified by applying well-known approaches from vector
field topology: an eigen-analysis of the Jacobian at the crit-
ical point. For an s-fold-fold, we consider the eigenvalues
of ∇g̃ at the bifurcation. Appendix 10 shows that they have
the form 0,0,−√rs,

√
rs where rs is a certain real number.

This gives the following classification: an s-fold-fold with
rs < 0 gives a closed collapse bifurcation: while moving for-
ward/backward in s, a closed zero-line of v becomes smaller,
collapses to a point, and disappears. For rs > 0 we obtain
a saddle bifurcation: while moving forward/backward in s,
two branches of the zero-curves of v move toward each other
until they intersect and make the two fold bifurcations disap-
pear. The case rs = 0 gives a structurally unstable event and
is not considered here.

The classification of a t-fold-fold bifurcation into saddle
and closed collapse works in a similar way. Here we com-
pute the eigenvalues of ∇f̃ which turn out to have the struc-
ture 0,0,−√rt ,

√
rt for a certain real number rt . Then rt > 0

gives a saddle bifurcation and rt > 0 gives a closed collapse
bifurcation.

Figures 3a–3c illustrate a number of fold-fold bifurca-
tions. Figure 3a shows an s-fold-fold saddle bifurcation. The
first row shows the visualization at 5 consecutive steps in
s. Throughout the entire figure 3, the bifurcations occur in
the third picture of every row. The same field as in the first
row is shown in the second row of figure 3a, but now with
interactively changing t. In fact, the third image of the first
row and the third image of the second row are the visualiza-
tions at the same location (s, t) in which the bifurcation oc-
curs. As we can see in the second row, no collapsing/splitting
of the fold bifurcation occurs at an s-fold-fold bifurcation if
moving in t. Figure 3b shows the same visualization for a
t-fold-fold closed collapse bifurcation. Figure 3c shows an
example of an s-t-fold-fold bifurcation. The two rows of this

s-fold-fold t-fold-fold s-t-fold-fold

saddle
f̃ 6= 0, g̃ = 0 f̃ = 0, g̃ 6= 0

dyvx = dxvy
rs > 0 rt > 0

closed
collapse

f̃ 6= 0, g̃ = 0 f̃ = 0, g̃ 6= 0

rs < 0 rt < 0

Table 2: The five cases of fold-fold bifurcations.

s-fold-fold t-fold-fold s-t-fold-fold

(BB) ↔ (BD) (BB) ↔ (DB) (BB) ↔ (DD)

(DB) ↔ (DD) (BD) ↔ (DD) (BD) ↔ (DB)

Table 3: Classification of fold-fold bifurcations wrt. the BD
classification of the collapsing/splitting fold bifurcations.

figure show that the splitting/collapsing of the fold bifurca-
tion occurs while moving forward in both s and t.

Table 2 summarizes the conditions for the 5 possible cases
of fold-fold bifurcations. Each of the cases occurs at struc-
turally stable locations in D̃ with v = 0 and the additional
conditions as shown in the table. A rather similar classifi-
cation of moving line structures as considered here was ob-
tained in [TSW∗05] in a different context: the tracking of
vortex core lines in 3D time-dependent vector fields. Note
that - similar to s-fold-fold and t-fold-fold bifurcations, the
possible bifurcations of moving vortex core lines are also
called saddle and closed collapse.

Each of the 5 fold-fold bifurcations can be further classi-
fied concerning their BD classification. In fact, an s-fold-fold
and a t-fold-fold can be either a birth or a death event of two
fold bifurcations. This means that the BD classification of an
s-fold-fold and a t-fold-fold bifurcation is either (B) or (D).
For an s-t-fold-fold the BD classification can be considered
for both s and t, yielding 4 cases for the BD classification:
(BB), (BD), (DB), (DD). This means that by adding a BD
classification to the 5 fold-fold bifurcations, we end up with
12 different cases of fold-fold bifurcations. For example, the
complete classification of the fold-fold bifurcations in figure
3a is (D)-s-fold-fold saddle, figure 3b shows a (B)-t-fold-
fold closed collapse, and figure 3c shows a (DB)-s-t-fold-
fold.

Fold-fold bifurcations can also be classified from another
point of view: from the BD classification of the two collaps-
ing/splitting fold bifurcations. If for instance a (BB) fold bi-
furcation collapses with a (BD) fold, we write (BB)↔ (BD)
for the fold-fold bifurcation. Table 3 shows the relation to the
above-mentioned classification. Note that this classification
is different to the BD classification of fold-fold bifurcations
mentioned above. Here, we consider the BD classifications
of the collapsing fold bifurcations, while in the other case
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(a) s-fold-fold saddle bifurcation.

(b) t-fold-fold closed collapse bifurcation.

(c) s-t-fold-fold bifurcation.

(d) t-Hopf-fold bifurcation.

Figure 3: Fold-fold and Hopf-fold bifurcations.

c© The Eurographics Association and Blackwell Publishing 2006.
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we consider the BD classification of the fold-fold bifurca-
tions themselves.

6. Tracking Hopf Bifurcations

A Hopf bifurcation, i.e., an event where a spiraling source
changes to a spiraling sink or vice versa, occurs at

[ v = 0 , div(v) = 0 ] (19)

together with det(vx,vy) > 0. Similar to fold bifurcations,
Hopf bifurcations build line structures in D̃. For tracking
them, we use again the FFF approach. In fact, we track all
parts fulfilling (19) and subsequently eliminate all parts of
the resulting lines with det(vx,vy)≤ 0. As part of the track-
ing, we consider the events of collapsing/splitting two Hopf
bifurcations: the Hopf-fold bifurcations.

6.1. FFF for Tracking Hopf Bifurcations

Let k̃ be the FFF in question for tracking Hopf bifurcations.
Using the abbreviation

e = div(v) = ux + vy, (20)

k̃ has to fulfill

[ k̃⊥∇u , k̃⊥∇v , k̃⊥∇e ]. (21)

which is a linear system with a unique solution for k̃ (except
for scaling):

k̃ =


det(∇u , ∇v , ∇e , i1 )
det(∇u , ∇v , ∇e , i2 )
det(∇u , ∇v , ∇e , i3 )
det(∇u , ∇v , ∇e , i4 )

 . (22)

Note that the last two components of k̃ are

k̃.3 = −ex det(vy,vt) + ey det(vx,vt) − et d (23)

k̃.4 = +ex det(vy,vs) − ey det(vx,vs) + es d. (24)

The starting points for integrating k̃ are the Hopf bifurca-
tions at the boundary of D̃, and the Hopf-fold bifurcations.

6.2. Hopf-fold Bifurcations

There are two kinds of Hopf-fold bifurcations. An s-Hopf-
fold is the event of collapsing two Hopf bifurcations while
moving forward/backward in s. They occur at structurally
stable isolated points with

[ (19) , k̃.3 = 0 ]. (25)

Their detection is equivalent to finding critical points in 4D
vector fields. At a t-Hopf-fold bifurcations, two Hopf bi-
furcations collapse while moving forward/backard in t. The
condition for them is

[ (19) , k̃.4 = 0 ]. (26)

Figure 3d illustrates a Hopf-fold bifurcation.

7. Implementational Details

To implement our topological method, a number of problems
have to be solved which are addressed in this section.

Some algorithms described in sections 2–6 are equiva-
lent to finding isolated critical points in n-dimensional vector
fields (n = 2,3,4 here). The detection of critical points is a
numerically challenging problem itself. We use a recursive
subdivision approach which we explain at a 3D example, but
it works in 2D or 4D in a similar way. To check whether a 3D
vector field w has critical points inside a box-shaped cell C,
we inspect the components of w at all 8 vertices of C. If one
of the components is positive at all vertices (or if one com-
ponent is negative at all vertices), no critical point inside C is
possible. Otherwise we apply a recursive octree subdivision
of C until its size is smaller than a certain threshold. This
method guarantees to find all critical points if w is piecewise
trilinear and the initial cells correspond to the underlying
grid. However, in most of the applications in sections 2–6
certain derivatives of v are involved, making it necessary to
start with smaller initial search cells than the given grid. An-
other problem is the performance. Especially for n = 4 the
algorithm may become rather time-consuming, making for
instance the direct search for isolated fold-fold and Hopf-
fold bifurcations applicable only for very small data sets.
Therefore, in our applications we extract fold bifurcations
on the boundaries of D̃ and restrict the search for fold-fold
bifurcations to the stream lines of h̃ starting from these folds
at the boundary.

Our method involves higher order derivatives of the 2D
vector field v. The data we consider here is given on regular
grids for which we used the quadratic super spline interpola-
tion from [RZNS04]. This way, a C1 continuous v gives C0

continuous h̃ and k̃.

Our approach is strongly based upon a numerical stream
line integration in n-dimensional (n = 2,3,4) vector fields.
Our implementation uses a 4th-order Runge-Kutta integra-
tion with adaptive step size control. Special care has to be
taken at the grid boundaries. Since h̃ and k̃ are only C0 con-
tinuous, the step size close to the grid boundary has to be
adapted to hit the boundary. For this point, the next integra-
tion step in the next cell can be carried out.

One of the main problems of the FFF approach is that it
has to keep the complete vector field in main memory. Two-
parameter-dependent vector fields may grow too large in size
even for the memory of high-end workstations. In this case,
out-of-core modifications of the FFF approach can be ap-
plied [WTHS05].

8. Applications

In this section, we apply our topological methods to a num-
ber of test data sets.

Figures 4–5 show the visualization of a random data set
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(a) before (b) the bifurcations (c) after

Figure 4: Noise data set: two saddle bifurcations.

Figure 5: Noise data set: overview.

on a 44 grid. Random vector fields are used as a proof-of-
concept since they contain the maximal amount of topolog-
ical information. Figure 5 shows an overview in (x,y,s)-
visualization. We see the paths of the critical points at a
certain time t and at the boundaries of D̃. Figure 4 shows
a detail of the data: two s-fold-fold saddle bifurcations in
(x,y,s)-visualization.

Figures 6–7 show the visualization of a 2D time-depen-
dent vector field v(x,y, t) describing the flow behind a
2D cylinder. The data set was kindly provided by Gerd
Mutschke (FZ Rossendorf) and Bernd R. Noack (TU Ber-
lin). This flow exhibits periodic vortex shedding leading
to the well known von Kármán vortex street. This phe-
nomenon plays an important role in many industrial appli-
cations, like mixing in heat exchangers or mass flow mea-
surements with vortex counters. However, this vortex shed-
ding can lead to undesirable periodic forces on obstacles,
like chimneys, buildings, bridges and submarine towers. The
original version of this non-compressible flow does not con-
tain critical points (except for two directly behind the cylin-
der). The right-hand image of figure 7a illustrates it at a
certain time t. In order to make topological methods ap-
plicable, a constant vector field can be subtracted which
corresponds to an observer moving with the flow. In or-
der to study the influence of the subtracted part, we apply
our topological analysis: if the average flow of the origi-
nal field is approximately (1,0)T as for the given data set,

Figure 6: Cylinder flow: all fold-fold bifurcations in (x,y,s)-
visualization.

we subtract the constant vector field (1− s) · (1,0)T with
s ∈ [0,1]. This gives the two-parameter-dependent vector
field v(x,y,s, t) = v(x,y, t)− (1− s) · (1,0)T . Figure 7a al-
ready shows for one particular t that increasing s from 0 to 1
will make the critical points collapse and disappear. Figures
7b–7e show v(x,y, t) at 4 different s-values. Each of the im-
ages shows the moving critical points in t as yellow (saddle)
and green (center) 3D curves. The larger s gets, the fewer
moving critical points are present. Figures 7b–7e also show
that the disappearance of the moving critical points does not
start from one of the boundaries of D but at a certain area
located downstream of the cylinder. To analyze this further,
we switch to a (x,y,s)-visualization as shown in figure 6.
Here we visualized all detected fold-fold bifurcations. We
can clearly see the parabola-like shape whose minimum de-
notes the location where – when moving forward in s – the
first moving critical points disappear. For this data set we de-
tected 92 fold-fold bifurcations, all of them are s-fold-fold
saddle bifurcations. The computing time was in the range
of several hours for detecting the paths of the critical points
of v at the boundaries of D̃. However, if this computation is
carried out once, the extraction of a skeleton for a particular
s/t is possible in less than a second on a current PC based
system.

Figure 8 shows the visualization of the wind components
of the Hurricane Isabel data set from the IEEE Visualiza-
tion 2004 contest. It was produced by the Weather Research
and Forecast (WRF) model, courtesy of NCAR and the U.S.
National Science Foundation (NSF). Although this is a one-
parameter-dependent 3D vector field v(x,y,z, t) = (u,v,w)T ,
the main flow takes place in u- and v-direction. By neglect-
ing the w-component and setting z = s, we obtain a two-
parameter-dependent 2D field from which we analyze the
first half of the original 48 time steps. Figures 8a–8d show
the (x,y,s)-visualization for different t-steps. We can clearly
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(a) LIC image for a certain t at s = 0.15 and s = 1

(b) s=0.15 (c) s=0.6 (d) s=0.8 (e) s=1

Figure 7: Flow behind a circular cylinder: s controls the subtracted constant field, t is the physical time parameter. (a) LIC
image for a certain t and two different s, (b)–(e) (x,y, t)-visualization for 4 different s.

see the dominating moving critical point (green line) chang-
ing its location while moving forward in t. Also, for high
s-values the dominating critical point tends to have a fold
bifurcation with a moving saddle (yellow). Figure 8e shows
the top view at t=19. Figure 8f shows the location of the
dominating critical point of v at the boundary s = smin of D̃
(white line). Note that this line serves as the seeding struc-
ture to integrating the moving critical points at different t-
values. Figure 8f also shows the moving critical point at t = 4
and t = 25.

9. Conclusions and Future Work

In this paper, we made the following contributions:

• We introduced a topology-based visualization approach
for two-parameter-dependent 2D vector fields.

• As part of this, we presented an algorithm to tracking fold
bifurcations and Hopf bifurcations in the 4D domain.

• We discussed local bifurcations introduced by the addi-
tional parameter: fold-fold and Hopf-fold bifurcations.
Based on an analysis of the underlying feature flow fields,
we gave a complete classification of them. We identified
5 classes of fold-fold and 2 classes of Hopf-fold bifurca-
tions (not including their BD classification).

• We applied the topological analysis to a number of test
data sets which cover different physical interpretations of
the two additional dimensions.

The most challenging issue for future research is the ex-
tension of our approach from 2D to 3D two-parameter-
dependent vector fields. While most of the topological con-
cepts extend straightforwardly, the main problem seems to
be an adequate visual representation of the resulting 5D fea-
tures.
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10. Appendix
To show that ∇g̃ at an s-fold-fold bifurcation has eigenvalues of the structure
0,0,−√rs,

√
rs , we insert insert vy = λvx and vt = µvx into the first order partials of

g̃. This gives

g̃x =


det(vx ,λvxt − µvxy)
det(vx ,µvxx− vxt )

0
det(vx ,vxy− λvxx)

 , g̃y =


det(vx ,λvyt − µvyy)
det(vx ,µvxy− vyt )

0
det(vx ,vyy− λvxy)

 ,

g̃s =


det(vx ,λvst − µvys)
det(vx ,µvxs− vst )

0
det(vx ,vys− λvxs)

 , g̃t =


det(vx ,λvtt − µvyt )
det(vx ,µvxt − vtt )

0
det(vx ,vyt − λvxt )

 .

The matrix ∇g̃ = (g̃x , g̃y, g̃s, g̃t ) has rank 2 because for the third line of ∇g̃ we have
∇g̃.3 = (0,0,0,0), and for the remaining lines holds ∇g̃.1 + λ∇g̃.2 + µ∇g̃.4 =
(0,0,0,0). This gives two eigenvalues of 0. Since furthermore trace(∇g̃) = 0, the remain-
ing eigenvalues add to 0, yielding the eigenvalue structure 0,0,−√rs,

√
rs . In a similar

way it can be shown that∇f̃ has the eigenvalues 0,0,−√rt ,
√

rt at a t-fold-fold bifurca-
tion.
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