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Figure 1: Consistent global illumination for out-of-core scenes. Left to right: 70 M triangles and many light sources, 40 M
triangles with glossy surfaces and depth-of-field, and 90 M triangles with a large number of glass objects.

Abstract
At present, stochastic progressive photon mapping (SPPM) is one of the most comprehensive methods for a con-
sistent global illumination computation. Even though the number of photons is unlimited due to their progressive
nature, the scene size is still bound by the available main memory. In this paper, we present the first consistent
out-of-core SPPM algorithm. In order to cope with large scenes, we automatically subdivide the geometry and
parallely trace photons and eye rays in a portal-based system, distributed across multiple machines in a commod-
ity cluster. Moreover, modifications of the original SPPM method are introduced that keep both the utilization of
tracer machines high and the network traffic low. Therefore, compared to a portal-based single machine setup, our
distributed approach achieves a significant speedup. We compare a GPU-based with a CPU-based implementation
and demonstrate our system in multiple large test scenes of up to 90 million triangles.

This is the authors preprint. The definitive version is available at http://diglib.eg.org/ and http://onlinelibrary.wiley.com/.

1 Introduction

A realistic image synthesis is required in many applica-
tions today. Architecture, urban design and especially movie
production often require the processing of extremly large
scenes, which is challenging due to their sheer size. A fre-
quent choice for a consistent, i.e., photometrically correct,
rendering solution is the stochastic progressive photon map-
ping (SPPM) of Hachisuka and Jensen [HJ09]. Yet, it was
not efficiently applied to large scenes, even though it proved

to converge faster for specular-diffuse-specular lighting ef-
fects, compared to traditional Monte Carlo-based renderers,
e.g., bi-directional path tracing [LW93]. Out-of-core pho-
ton mapping, such as the portal-based approach of Fradin
et al. [FMH05] (not yet consistent), proved rather memory
unfriendly, since photons follow highly scattered paths and
incoherently bounce through the entire scene. For consis-
tent renderings, this requires frequently swapping the scene
data at highest detail to continue the tracing, because pho-
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tons may revisit the same scene parts multiple times. There-
fore, the simulation quickly becomes memory-bound due to
the expensive and frequent loading of scene data. Further-
more, there is a large variation in ray computation time,
which causes periods of under-utilization of parallel pro-
cessors, when only few rays are traced toward the end of
each iteration. Another open question is the choice of hard-
ware for such a configuration. While the GPU-based SPPM
implementation of Hachisuka and Jensen [HJ10] is faster
than their original CPU-based SPPM [HJ09] for scenes fit-
ting into GPU memory, it remains unclear how well both
techniques scale in an out-of-core setting—especially since
GPUs have less memory to operate on.

In this paper, we extend both the CPU-based and
GPU-based SPPM implementation of Hachisuka and
Jensen [HJ09, HJ10] to cope with large scenes by using a
portal-based system, similar to Fradin et al. [FMH05], based
on an automatic scene subdivision. We study and compare a
GPU-based, CPU-based and hybrid implementation to com-
pile a guideline, which method to choose in a given scene. To
increase the throughput in all cases, we distribute the tracing
of photons and eye rays across multiple tracer machines in a
commodity cluster. As a result, we reduce the scene loading
operations, since effectively more memory becomes avail-
able. Our configuration uses multiple client machines for
the tracing and one server to estimate the radiance per pixel.
Thereby, the effective utilization of multiple machines in the
network is a challenging problem, due to potential periods of
under-utilization toward the end of each iteration. We were
able to increase the photon throughput significantly, com-
pared to a straightforward out-of-core implementation, by
running the photon and eye ray tracing in parallel. More
specifically, we coalesce tracing jobs and trace photons from
multiple iterations at the same time, which in turn allows to
guarantee that a certain number of tracing jobs is present in
the network at all times, keeping all machines busy. We show
that our method traces in a GPU-based, distributed system
5 times more photons and 30 times more hit points than a
standard CPU-based SPPM implementation. The main con-
tributions of this paper are:

• the consistent extension of stochastic progressive pho-
ton mapping to out-of-core scenes based on an automatic
scene subdivison,
• a client-server architecture that distributes the computa-

tion to the CPUs or GPUs of multiple machines in a local
network,
• optimizations for processing and transporting photon and

eye ray paths in the network,
• a comprehensive guideline for the implementation

method (GPU/CPU/hybrid).

Being able to obtain photometrically correct global illu-
mination on large scenes provides a ground truth that is of
use to validate the correctness of approximations used in
production rendering.

In the remainder, we first describe related work in Section
2. In Section 3, we describe our distributed and hybrid out-
of-core extension of the CPU-based and GPU-based SPPM
and afterwards elaborate on the details of its efficient imple-
mentation in Section 4. Finally, we evaluate and discuss our
results in Section 5, including a guideline to decide when to
use CPU-based, GPU-based or hybrid SPPM, and conclude
and encourage further research in Section 6.

2 Related Work

2.1 On the Development of Photon Mapping

The original photon mapping [Jen96] is a two-step algorithm
for solving the rendering equation [Kaj86], i.e., to integrate
the irradiance, reflected by the BRDF toward the viewer.
First, photons are traced from the light source, are reflected
based on BRDFs, and are stored in a k-d tree when hitting
a diffuse surface. In a second step, paths are traced from
the eye through the pixels to generate hit points, at which
the photon density is estimated via range query. This radi-
ance estimate contains noise due to the finite number of pho-
tons and a bias due to the fixed search radius. For this rea-
son, Hachisuka et al. [HOJ08] introduced progressive pho-
ton mapping (PPM), a consistent extension that iteratively
generates new photons and only stores photon statistics in-
stead of all photons. This allows to increase the number of
photons while shrinking the search radius. It was further ex-
tended in [HJ09] to stochastic progressive photon mapping
(SPPM), which generates new hit points in each iteration, in
order to integrate the radiance over the area projected onto
the pixel. Thereby, all hit points of a pixel share the statis-
tics, which allows for an efficient computation of distributed
ray tracing effects like depth of field and glossy materials.

Several approaches exist to implement photon mapping
on the GPU, cf. Ritschel et al. [RDGK12]. Among those,
Hachisuka and Jensen [HJ10] suggested to store the pho-
tons of the current iteration using stochastic spatial hashing.
There, the storage index is obtained by binning the photon
position into a regular cell grid and by mapping the cell ID
via hashing function to a memory address. Among the pho-
tons that were binned into a cell, only one is chosen for stor-
age by Monte Carlo sampling. Due to the random writing
order, the photons can overwrite each other and the selection
probability is aquired by atomically counting the collisions.
For the update of photon statistics, photons in cells inside the
search radius around the hit point are considered. The whole
procedure for GPU-based SPPM is visualized in Figure 2.

Knaus and Zwicker [KZ11] showed how to reduce the
memory requirements by sharing statistics among all pixels.
Recent work introduced more robust combinations of SPPM
with bi-directional path tracing [HPJ12, GKDS12] that im-
portance sample the full light path, i.e., multiple impor-
tance sampling. An adaptive PPM by Kaplanyan and Dachs-
bacher [KD13] proved better convergence rates by estimat-
ing the optimal search radius.
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Figure 2: GPU-based SPPM consists of three repeating
steps: First, photons are traced from the light source and
are stored using spatial hashing (shown as green grid). In
the second step, hit points are traced from the eye. In the
third step, photons are collected at the hit points in a search
radius and the photon statistics are updated.

2.2 Out-of-Core Global Illumination

Over the years, most standard global illumination algo-
rithms were extended to out-of-core scenes, including ra-
diosity [TFFH94], ray tracing [PKGH97, CLF∗03, YM06],
path tracing [BBS∗09, ENSB13] and many-light tech-
niques [WHY∗13]. In production rendering, hybrid com-
binations of out-of-core GPU-based ray tracing with pre-
computed radiance transfer [SKS02], as in Pantaleoni et
al. [PFHA10], and point-based approximations as in Kon-
tkanen et al. [KTO11] proved useful. Photon mapping—at
this point still inconsistent—was regarded by Christensen
and Batali [CB04] for large out-of-core production scenes.
They proposed to agglomerate the irradiance at all photon
positions in regular octrees, assembling an irradiance atlas,
which is designed to enable efficient caching. Lighting is
done by final gathering and irradiance interpolation in the
atlas. Later, Fradin et al. [FMH05] used a system based
on cells and portals to distribute photons in large build-
ings. They manually divided the scene into rooms connected
by portals, traced photons in the rooms successively and
recorded photons in portals to be continued later in adjacent
rooms. They computed indirect illumination by photon map-
ping and casted rays to compute the direct lighting from light
sources visible from the point at hand. Since a gathering ker-
nel with a constant size was used for the photon density es-
timation, discernible artifacts occurred at portal transitions.

The computation of caustic maps, as a part of the ren-
dering solution, was distributed in commodity clusters. For
an interactive application, Wald et al. [WKB∗02] proposed
a screen space subdivision of the workload for scenes fit-
ting into the memory of each machine. Their technique uses
instant radiosity [Kel97] to compute diffuse interreflections
and additionally constructs a caustic photon map for render-
ing caustics. Kato and Saito [KS02] published results of their
parallel global illumination renderer Kilauea, which utilizes

a PC cluster consisting of 16 nodes. They combined a Monte
Carlo-based ray tracer with final gathering on a photon map.
The scene size, however, is limited to the memory available
in the cluster. So, we observe that none of the existing photon
mappers attains a consistent solution for out-of-core scenes.

3 Distributed Out-of-Core SPPM

In the extension of photon mapping [HJ09, HJ10] to out-
of-core scenes by portal-based ray tracing [FMH05], we
face two main challenges: scene loading latency and under-
utilization of resources. The first issue is due to incoherent
bouncing of photons in the scene, causing frequent loading
of geometry data at highest detail from disk. A solution to re-
duce the scene loading operations is to increase the available
memory. An economic option—and the one we chose—is
to invest in a cheap commodity cluster, as in [KS02]. The
under-utilization of resources occurs in the end of each trac-
ing iteration, since we usually must wait until the last rays
have finished. In previous methods, the photon and hit point
tracing were executed alternately. This is especially waste-
ful if only a few rays are bouncing between scene parts.
Not only individual CPUs or multi-processors on the GPUs,
but even worse entire machines start idling. Our solution to
this problem is to parallelize the tracing of photons and hit
points, so that (a) workload can be efficiently distributed
across the network, and (b) scene loading operations are
minimized.

3.1 Overview

An overview of our out-of-core simulation is shown in Fig-
ure 3: In a pre-process, the large scene is automatically sub-
divided into c smaller chunks that fit into the system’s mem-
ory, i.e., main memory or video memory depending on the
chosen architecture. Similar to Fradin et al. [FMH05], the
chunks are separated by portals. For reference, we first ex-
plain a naïve out-of-core SPPM implementation on a single
machine that suffers from the aforementioned problems. Af-
terwards, we introduce our distributed solution.

Single Machine On a single machine, the three repeat-
ing steps of GPU-based SPPM (Figure 2) are processed se-
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Figure 3: Out-of-core SPPM: A large scene is subdivided
into chunks of equal memory, separated by portals (dashed
lines). When a photon or eye ray hits a portal, it is temporally
stored and continued when the adjacent chunk is activated.
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Figure 4: Left: Client-Server Model. Right: Distribution of c geometry chunks to n client machines. In case of more geometry
chunks than client machines (c > n), a fixed set of c/n chunks is assigned to each client and processed in a round-robin fashion
(top right). If more client machines than geometry chunks are available (c < n), multiple clients use the same, fixed chunk
geometry for tracing (bottom right).

quentially. One chunk after another is loaded for tracing the
photon and afterwards hit point rays. Whenever a ray hits a
portal, it is temporally stored and continued later when the
adjacent chunk gets activated. The CPU-based implementa-
tion uses traditional k-d trees for photon storage and range
queries.

Network In our network approach, the chunks are pro-
cessed in parallel. To distribute the work across multiple ma-
chines, we use one server and n clients, as shown in Figure 4.
Thereby, we support the following four configurations in our
distributed out-of-core SPPM (DOSPPM):

• CPU-based DOSPPM (clients and server use CPU),
• GPU-based DOSPPM (clients and server use GPU),
• Hybrid GC (GPU-based clients, CPU-based server),
• Hybrid GS (GPU-based server, CPU-based clients).

The scheduler of the server assigns chunks to the available
client machines. Each client loads one of its assigned chunks
of scene geometry and traces photon and eye ray paths inside
this chunk—either on the GPU or CPU. If multiple chunks
are assigned to a client, the client unloads the current chunk
and loads the next chunk when all its jobs are processed.
Whenever a ray hits a portal, it is forwarded to the client re-
sponsible for the adjacent chunk to be continued there. De-
posited photons and hit points of eye rays are sent back to the
server. Depending on the chosen architecture, the arriving
photons are either stored stochastically in a spatial hash map
on the GPU [HJ10], or in a k-d tree in main memory (CPU-
based). The photon statistics are updated when all hit points
of the current iteration arrived at the server. In this setup,
we are able to trace eye rays and multiple photon iterations
simultaneously. In fact, we emit new photons if the current
number of pending photon tracing jobs in the network falls
below a certain threshold (in our experiments 1k jobs), to
keep all machines busy at all times. Typically, SPPM car-
ries out two sampling processes: a sampling of the area pro-
jected to the pixel by emitting hit points and a sampling of
the flux at the hit points by emitting photons, which are both
explained in the following.

3.2 Hit Point Sampling

The update procedure of the photon statistics is similar to
the original, sequential SPPM [HJ09] and works as follows
(Figure 2): Given Ni photons inside the search region S of a
pixel after i iterations. In iteration i+ 1, Mi additional pho-
tons arrive in search radius Ri at the currently sampled hit
point~x ∈ S. In sequential SPPM, these photons were emitted
in iteration i+ 1. In our method, these are the photons that
arrived most recently, originating in possibly different iter-
ations. Thus, as a contribution, the radiance estimate treats
photons of different iterations equally, which allows to trace
them in parallel in a joined set. Then, similar to [HJ09], only
a fraction α ∈ (0,1) of these new photons is considered:

Ni+1(S) = Ni(S)+αMi(~x). (1)

Assuming a uniform photon distribution, the search radius is
decreased to cover the new number of photons:

Ri+1(S) = Ri(S)

√
Ni(S)+αMi(~x)
Ni(S)+Mi(~x)

. (2)

Thereby, α steers the rate of radius reduction. The BRDF-
weighted, total flux of the Mi photons found in iteration i+1
is given as:

Φi(~x,~ω) =
Mi(~x)

∑
p=1

fr(~x,~ω,~ωp)Φp(~xp,~ωp), (3)

with fr being the BRDF (for viewing direction~ω and photon
direction ~ωp) and Φp being the photon flux. The value Φi is
added to the total BRDF-weighted flux τi+1 and both are
corrected for the decreased search radius Ri+1:

τi+1(S,~ω) = (τi(S,~ω)+Φi(~x,~ω))
Ri+1(S)

2

Ri(S)2 . (4)

(Assuming uniform photon distribution within Ri+1.) The fi-
nal radiance L of a pixel is obtained by normalizing τi with
the total number of photons emitted after i iterations Ne(i):

L(S,~ω) = lim
i→∞

τi(S,~ω)
Ne(i)πRi(S)2 . (5)
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3.3 Photon Sampling

Our modifications to run SPPM efficiently in a network
mainly concern the photon sampling. As shown in Eq. 3,
SPPM uses an estimate of the flux to compute the radiance
at~x. To describe the incoming flux at~x, we use the notion of
a flux map Ψ

~x
~xL,ωL

: R→ R, which tells how much differen-
tial flux arrives at a differential area around position~x, when
emitting differential flux at~xL in direction~ωL (see Figure 5).
This map implements the tracing and BRDF-dependent re-
flection of photons. The incoming flux Φ(~x) is estimated by
Monte Carlo integration of arriving flux over the emitters F :

Φ(~x) =
∫

F
Ψ
~x
~xL,~ωL

(dΦL) (6)

= lim
i→∞

1
Ne(i)

Ne(i)

∑
k=1

Ψ
~x
~xL,~ωL

(Φk) (7)

≈ 1
Ne(i)

Ne(i)

∑
k=1

Ψ
~x
~xL,~ωL

(Φk) (8)

with dΦL being the differential flux emitted at location ~xL
in direction ~ωL, and Φk being the discrete version, i.e., the
flux of a photon. In each iteration, photons are emitted from
all light sources by importance sampling according to the
radiant intensity. Due to the delay in the network, photons
may arrive in a later iteration (see Figure 5 right). In con-
trast to [HJ09], the photons are subject to a permutation and
they arrive in slightly different numbers. In a given iteration,
this changes the statistical values, but in the limit, or when
the yet started tracing processes are finished to store inter-
mediate results, this does not influence consistency. The rea-
son is that every photon is processed once, none is forgotten
and the order is still independent of the hit point location.
Eq. 8 integrates into the PPM radiance estimate at location
~x, viewed from direction ~ω:

L(~x, ~ω) = lim
i→∞

τi(~x, ~ω)
Ne(i)πRi(~x)2 , (9)

There, the BRDF-weighted accumulated flux τi(~x, ~ω) is
used, which is approximately:

τ̂i(~x, ~ω) =
Ne(i)

∑
k=1

fr(~x, ~ω, ~ωk)Ψ
~x
~xL,~ωL

(Φk), (10)

with τi(~x, ~ω) ≈ τ̂i(~x, ~ω). In practice, the accumulated flux
depends on the search radius, but in the limit, both approxi-
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x

Figure 5: Left: Flux map. Right: Photons emitted in iter-
ation i may arrive in a later iteration, since they are still
stored in portals when the photon statistics are updated.

mations approach the same value by definition. As the SPPM
radiance estimate (Eq. 5) is based on the PPM update by
sharing photon statistics, our modification applies to SPPM,
too. Since hit point sampling and photon sampling are sep-
arate processes, the photon and hit point iterations do not
need to alternate. Thus, one contribution of our work is the
decision to execute the photon tracing and hit point tracing
in parallel.

4 Details and Implementation

In this section, we explain the automatic subdivision of the
scene, consistency regards and the optimizations needed for
efficent computations in the network.

4.1 Automatic Scene Subdivision

In a preprocess, we automatically subdivide the scene into
chunks that fit into the system’s memory, i.e., the video
memory of a GPU or the available main memory for CPU-
based tracing, depending on the chosen architecture. Ide-
ally, rays travelling through the scene should visit as few
chunks as possible. We therefore aim to avoid chunks with
a complicated border shape, as rays travelling in the scene
from end to end might be subject to a large number of ray
intersections. Thus, a subdivision into simple box-shaped
chunks is desirable. We obtain such a subdivision by a sim-
ple five-stage algorithm, illustrated in Figure 6: First, we ob-
tain the polygon count for each cell of a uniform grid of
user-defined size by binning all polygons into the grid (sim-
ilar to [PFHA10]; for our test scenes, the grid dimension is
listed later in Section 5). The second step is a top-down con-
struction of a k-d tree. For each cell, we inspect all three
axes and select the split position which minimizes the dif-
ference in the polygon counts of the two halves. We proceed
the splitting recursively until the chunks fit into the avail-
able memory. Third, we place portals (i.e., virtual quads) be-
tween neighboring chunks to mark transitions. Fourth, we
insert the polygons into the chunks. If a polygon intersects
a portal plane, it is inserted in both chunks. Fifth, we build
a data structure for each chunk to accelerate the ray tracing,
i.e., a SBVH tree [SFD09], as it performed best in our exper-
iments. Figure 6 (right) shows a color-coded subdivision of
a scene. This simple, yet efficient subdivision scheme leads
to box-shaped chunks of roughly equal size.

4.2 Out-of-Core Radiance Estimates

The portal-based, sequential chunk-by-chunk processing
in tracing photons and eye rays is similar to Fradin et
al. [FMH05], though we aim for a consistent solution. The
implementation of Fradin et al. contained an additional bias
at the portals, since hit points did not account for the photons
inside adjacent chunks. Although the query radius is shrink-
ing progressively in PPM, the resulting bias remains visi-
ble in many practical cases, as shown in [KD13]. Depending
on the chosen architecture—the GPU or the CPU—different
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Figure 6: Left: Subdivision pipeline. Right: Visualization of the subdivision of the CryTek Sponza scene into eight chunks.

options arise for estimating the radiance on the server side. If
the CPU is chosen, we construct a unified k-d tree to which
photons from all chunks are added. Thus, each range query
has access to photons from all chunks and no seams arise at
portals. In a GPU setting, we circumvent the problem of vis-
ible seams at the portals by using a single spatial hash map
that is confined by the bounding box of all hit points. The
bounding box is extended by the initial search radius in all
directions to ensure that all relevant photons are collected.
This means that photons in a cell of the hash map can be lo-
cated in different chunks of geometry. Therefore, a hit point
always collects photons located in all chunks and no addi-
tional bias appears at the transition region (see Figure 7).
Note that the stochastic spatial hash map requires a constant
amount of storage for storing the photons.

In addition, it is possible to subdivide the spatial hash map
into multiple smaller maps and to update the photon statistics
in each map separately. Thereby, the bounding boxes of the
maps must overlap by extending the box by the initial search
radius. Thus, a photon can be contained in multiple maps. A
hit point, however, must be contained in exactly one map by
considering the non-overlapping, original box size. Doing so
allows to obtain less hash collisions and therefore faster con-
vergence, but at the cost of more computationally expensive
photon statistics updates.

4.3 Batching and Culling

To further improve the performance of our photon map-
pers we implemented several optimizations. Two of them
are specifically designed to increase the utilization of GPU
multi-processors, these are: client batching and server batch-
ing. The third optimization improves both the CPU and GPU
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Figure 7: Correct portal transitions (GPU-based): A hit
point located close to a portal collects all photons inside the
search region. Since the spatial hash map stores photons of
the whole scene, photons from both chunks are located.

implementation, i.e., photon culling. In the following, we ex-
plain each in turn.

Client Batching On the client side, all incoming ray trac-
ing jobs are batched, i.e., coalesced to form larger packages
that better utilize the GPU in their parallel processing. An
example for photon rays is shown in Figure 8. Eye rays are
batched likewise. This is especially beneficial for high chunk
numbers and at a high number of ray indirections, since ray
packages split when they enter different chunks, i.e., one
package is sent to every visited neighbor chunk. (Unbatched,
the number of ray packages grows exponentially.)

Server Batching The server collects photons in batches,
too, before carrying out a photon statistics update. For this,
the server awaits the arrival of a certain number of photons.
(In our experiments we chose 1M photons.) This value is
a trade-off between barely-filled hash maps, causing under-
utilization of the GPU, and a high number of hash collisions
that cause loss of variations, i.e., slower convergence. At the
end of the simulation, photon emission is stopped and the
arrival of all remaining jobs is awaited. The final batch is
processed even if it is not yet completely filled.

Photon Culling For the update of photon statistics, we are
only interested in photons that are located in the search ra-
dius of at least one hit point. To reject unused photons before
sending them to the server, we conservatively cull them us-
ing the bounding box of all yet found hit points, extended by
the maximum search radius in all directions. More specifi-
cally, we cull the photons already on-the-fly on the client’s
GPU to prevent the memory transfer to RAM, or in the in-
tersection handling code on the CPU, respectively. Photons
outside this region can safely be ignored, since the box con-
verges to the true bounding box in the limit (see Figure 9).
Initial errors due to missing photons disappear over time. In
doing so, we reduce the network traffic to the server. The

1 2

3
44

17M. Weiss and T. Grosch: Stochastic Progressive Photon Mapping for Dynamic Scenes

Figure 8: Photon batching example: A photon job is emitted
in chunk 1. The portal photons are traced in smaller jobs in
chunks 2 and 3. When chunk 4 gets activated, all incoming
portal photons are coalesced into a single tracing job.

c© 2014 The Author(s)
Computer Graphics Forum c© 2014 The Eurographics Association and John Wiley & Sons Ltd.



T. Günther & T. Grosch / Distributed Out-of-Core SPPM

Figure 10: Our test scenes: MPI building (70M triangles, 129.0h), CryTek Sponza (40M triangles, 82.4h) and Cornell Dragon
(102K triangles, 18.2h)

current hit point bounding box is included in a photon emis-
sion job and is expanded when photon tracing jobs are joined
to avoid broadcasts by the server that are otherwise needed
to report the new box to the clients. Culling photons is espe-
cially useful if the camera sees only a fraction of a scene.

5 Results

We obtained our results using a cluster of 9 equal machines
(1 server and 8 clients) with a 1 GBit/s connection. Each
machine is equipped with an Intel Xeon X3480 CPU with
3 GHz, 16 GB RAM and an Nvidia GTX 460 GPU with 1
GB VRAM. We used Nvidia’s GPU ray tracing engine Op-
tiX [PBD∗10] for the intersection tests on the GPU and a
single-threaded SSE optimized ray tracer on the CPU. For
the communication between the machines we used the mes-
sage passing interface MPICH2 [Arg].

We evaluated our method with several test scenes (see
Figures 1(right) and 10), for which scene characteristics are
summarized in Table 1. Our smallest scene is the Stanford
Dragon in a Cornell box, and among our test scenes it is
the only one that fits entirely into GPU memory. We used
it for comparisons with standard SPPM and for parameter
studies (number of chunks and tracers, and architecture stud-
ies). The CryTek Sponza scene is test ground for distributed
ray tracing effects: It contains ten Stanford Lucys (each 4 M
triangles) and many glossy materials. In the MPI building
we evaluated the behavior of our method in case of many
light sources (here, 623). Moreover, it is the largest scene
that our GPU cluster can load completely into the distributed
VRAM. For our last and largest test scene, we added 200
glass Stanford Lucys (each 100 k triangles) to the MPI build-

Iteration 1 Iteration 2 Joined BBox
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Figure 9: Photon culling: Photons outside the common hit
point bounding box are not transferred back to the server.

ing, resulting in a scene that is only loadable by a single ma-
chine into RAM so that we can draw comparisons to stan-
dard CPU-based SPPM.

In all scenes, the time spent on scene subdivision and
SBVH construction was orders of magnitude smaller than
the rendering time. In the MPI building, the subdivision took
longer, since large triangles overlapped more bins, which
therefore needed to be tested. The SBVH construction, on
the other hand, was faster, as the insertion needed less cuts.

5.1 Comparison to Sequential SPPM

By using the scene that still fits into the memory of one GPU
(i.e., the Dragon scene), we compare GPU-based and CPU-
based SPPM with our out-of-core extension on a single ma-
chine (OSPPM), shown in Figure 11. In general, we list the
throughput of photons and hit points per second, divided by
the number of participating machines, i.e., the throughput
per machine second (Ma Sec). It can be seen that the CPU-
based method (throughput multiplied by four to account for
a multi-threaded implementation) scales far better than the
GPU-based method. The GPU, however, reaches far better

CPU*
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300,000

SPPM OSPPM
c=1

OSPPM
c=2

OSPPM
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Figure 11: Comparison in the Dragon scene of GPU-based
SPPM (•) with OSPPM (•) and CPU-based SPPM (•) with
OSPPM (•). The CPU* marks that the CPU timings are con-
servatively multiplied by four to account for multi-threading.
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Scene Triangles Subdivision (bins) BVH building & size (GPU/CPU) Lights Photon/It. Resolution
Dragon 102 k 2 sec (4 k) 14 sec / 12 MB 2 sec / 14 MB 1 100 k 800×800
Sponza 40 M 2.3 min (262 k) 19 min / 2.9 GB 46 sec / 5.3 GB 5 500 k 960×600

MPI 70 M 20 min (262 k) 3 min / 4.8 GB 2 min / 9.0 GB 623 10 M 1720×1060
MPI Lucy 90 M 48 min (262 k) – 3 min / 12 GB 623 10 M 1720×1060

Table 1: Table showing for the main test scenes the complexity (number of triangles), timings for scene subdivision and BVH
building, the number of lights, the number of photons emitted in one iteration and the viewport resolution. All scenes were
subdivided into 8 chunks and were traced on 8 client machines. The spatial hash map had a resolution of 512×128×512 and
we traced photons up to ten indirections.

peak performance at a small number of chunks. In fact, if
the scene fits into the VRAM of a single GPU, standard
GPU-based SPPM is the fastest method and therefore advis-
able. The overhead arising by the copying of photons and hit
points between VRAM and RAM can be seen at the through-
put of GPU-based OSPPM (c= 1), compared to SPPM (drop
by 41 %). The performance of GPU-based OSPPM drops
rapidly when increasing the number of chunks, because of
the high number of portal transitions and the switching to
the ray tracing acceleration data structure of the next chunk.
The asynchronous loading of the next chunks is still not fast
enough to prevent the GPU from idling, though it benefits
the CPU-based method, as it loads faster.

Additionally, we compare scene subdivisions into sev-
eral c chunks and numbers of tracer machines n in our dis-
tributed out-of-core approach (DOSPPM) for all possible ar-
chitecture choices, i.e., GPU-based, Hybrid GS, Hybrid CS,
and CPU-based, shown in Figure 12. For the distributed ap-
proaches, mere scaling of timings cannot account for multi-
threading, as the tracing rate and the network bandwidth de-
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Figure 12: Comparison in the Dragon scene of architecture
options for DOSPPM, i.e., purely CPU-based (••), Hybrid
GC that is GPU-based clients and a CPU-based server (••),
Hybrid GS that is a GPU-based server and CPU-based
clients (••), and purely GPU-based (••). The throughputs
are given for various numbers of chunks c and tracers n.

pend on each other. In the following, timings are w.r.t. a
single-threaded implementation. It can be seen that in nearly
all configurations an increase in the number of chunks and
tracers (c = n) leads to a loss of performance due to por-
tal overhead. For this reason, dividing into as few chunks as
necessary is advisable. Since hit point iterations are not par-
allelized, their throughput further drops. Clearly, the GPU-
based method achieves the best performance, whereas the
CPU-based method performed worst. The throughput of the
hybrid methods indicates that the server is the bottleneck, as
the choice of GPU or CPU on the clients has a small effect.

Doubling the number of tracers from n = 4 to n = 8 while
keeping the number of chunks constant (c = 4) increases the
overall throughput of photons and hit points. In an n < c set-
ting, overhead arises due to swapping of scene data, but the
performance still increases if more tracer machines are used:
Four tracers (n= 4), compared to one tracer (n= 1), increase
the photon throughput for 8 chunks (c = 8) by factor 14.9
(GPU) and 2.1 (CPU). The hit point throughput increases by
factor 6.1 (GPU) or drops by factor 0.2 (CPU), as network
workload arises that is not compensated, since hit point iter-
ations are traced successively.

Based on the results from Figures 11 and 12, Table 2
shows the speedup attained in the Dragon scene by using
GPU-based DOSPPM over GPU-based OSPPM for several
scene subdivisions. While a small subdivision introduces
some overhead, using more chunks leads to an up to 138
times speedup for photons and 7 times speedup for hit points.
Similarly, we measured the speedup factor for our CPU-
based implementation. However, as Figure 11 suggests, the
CPU-based OSPPM method barely loses performance, since
the asynchronous loading of the chunks hides most of the

# Chunks 2 4 8

Dragon, GPU
Photons 2.67 18.20 138.7

Hit points 0.43 1.93 7.19

Dragon, CPU
Photons 0.86 1.25 0.91

Hit points 0.21 0.22 0.19

MPI Lucy, CPU
Photons 0.61 0.64 4.46

Hit points 5.55 3.52 11.67

Table 2: Tracing speedup factor attained by using DOSPPM
compared with OSPPM. Listed for GPU-based and CPU-
based runs in the Dragon scene and a larger run in the MPI
Lucy scene. One chunk per tracer was used, i.e., c = n.
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Scene Photon/Ma Sec Hit point/Ma Sec GPU load (srv/cln) Bandwidth (srv/cln)
Dragon 40,469.35 13,793.10 14 % / 93 % 45 % / 21 %
Sponza 12,727.01 3,047.62 6 % / 86 % 20 % / 7.5 %

MPI 24,818.63 27,711.34 7 % / 87 % 19 % / 9.8 %
MPI Lucy Does not fit into distributed GPU memory.

Scene Photon/Ma Sec Hit point/Ma Sec CPU load (srv/cln) Bandwidth (srv/cln)
Dragon 6,137.99 8,315.41 47 % / 52 % 14 % / 8.9 %
Sponza 5,011.82 1,823.51 52 % / 47 % 17 % / 4.0 %

MPI 1,924.15 1,020.54 35 % / 86 % 6 % / 2.5 %
MPI Lucy 2,053.54 978.56 35 % / 89 % 10 % / 4.1 %

Table 3: Table showing the utilization of our system running on GPUs (top) or CPUs (bottom), the required network bandwidth
and the achieved photon and eye ray throughput (1 server, 8 clients, 8 chunks).

portal loading overhead. In larger scenes, for instance the
MPI Lucy scene, asynchonous scene loading operations can-
not be hidden. Thus, our distributed approach that reduces
the loading operations starts paying off in a CPU setting as
well. Though, the improvement is not as drastical as in the
GPU-based implementation, i.e., a speedup of factor 4.46 for
photons and 11.67 for hit points in an c = n = 8 setting.

5.2 Performance and Hardware Utilization

We list the performance, measured for 8 clients and 8
chunks, in Table 3 for all test scenes, using both a GPU-
based and a CPU-based implementation. Moreover, it con-
tains both for server and clients the average CPU/GPU load
and the arising bandwidth utilization. Both the CPU/GPU
and network utilization depend on each other, since a slowed
transmission means less work arriving at the clients.

GPU implementation The GPU utilization on the clients is
quite high (86-93 %), though there is still room for improve-
ments, e.g., by a better pipelining of the memory I/O and
tracing. In all cases, the server’s GPU utilization was lower
(6-14 %). One option to fill the idle times is to spend time
on more accurate radiance estimates, i.e., by subdividing the
spatial hash map as described in Section 4.2. The network
utilization, in our experiments never higher than 45 %, be-
comes critical if saturation is approached. It depends on a
number of factors: the camera position (i.e., photon culling),
the scene (materials, geometry arrangement, light sources),
the scene subdivision (imbalance of workload) and the num-
ber of photons and hit points (viewport resolution).

CPU implementation The CPU is—as expected—in most
cases slower than the GPU. The CPU clients spend 52-89 %
of the time on tracing, which is still improvable. This is be-
cause the processing rate is lower and individual machines
tend to idle, when waiting for the swamped clients to pro-
cess their jobs. A possible next step is to further optimize
the processing performance.

Conclusion The previous two sections showed that GPUs
are favorable on tracer machines for scenes fitting into the
distributed VRAM, due to their high processing rate. On

larger scenes, a CPU tracer setup is advisable as it scales
better, also because in a CPU setting fewer chunks are nec-
essary due to more available RAM. The following sections
further discuss scalability.

5.3 How Many Clients Can a Server Maintain?

Observing the individual timings of the simulation steps al-
lows to estimate how many clients a single server can main-
tain. Thus, in Table 4, we show a breakdown of the individ-
ual processes of our simulation for the Dragon scene. Note
that the GPU-based method is faster on both the client and
the server.

GPU implementation A tracing command of 100k pho-
ton rays and the copy of the resulting 269 k deposited pho-
tons to the CPU take together 255.8 ms on a client. The
server processes photons in batches of 1 M photons, thus
1 M/269 k = 3.72 photon emissions are processed by one
photon statistics update. Their tracing takes 951.6 ms in to-
tal. On the server, the transfer of the batched photons to the
GPU and the photon statistic update take 93.3 ms in total.
Hence, in the worst case (i.e., without inter-client commu-
nication) one server can maintain about 951.6/93.3 = 10.2
GPU-based photon tracing machines, before it becomes a
bottleneck. (Assuming the hit point tracing runs in parallel.)

CPU implementation In a CPU-based setting, 1 M pho-

Simulation process
Time in ms

GPU CPU
Photon tracing (100k→ 269k) 179.1 2,633.1
Copy photons: GPU to CPU 76.7 –
Copy photons: CPU to GPU 74.9 –

Hit point tracing (640k→ 617k) 152.7 3,659.7
opy hit points: GPU to CPU 49.2 –

Copy hit points: CPU to GPU 46.7 –
Update Photon Statistics 18.4 792.5

Table 4: Timing breakdown of the simulation processes in
the Dragon scene on a single machine. Emitted and final
counts are shown for photons and hit points. Note that the
CPU implementation is single-threaded.
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tons are traced in 9795.1 ms. The respective photon statistics
update requires 792.5 ms. Thus, a CPU-based server main-
tains up to 9795.1/792.5 = 12.4 CPU-based tracers.

Hybrid implementation The only hybrid setting of inter-
est when considering large scenes is a GPU-based server and
CPU-based client tracers, since CPU-based tracers show bet-
ter scalability. In this setting, a GPU-based server maintains
up to 9795.1/93.3 = 105 CPU-based tracers.

Conclusion As our cluster comprises 8 tracer machines,
neither in a pure GPU-based nor in a pure CPU-based set-
ting, the server will become a bottleneck. In large clusters,
GPU-based servers are advisable.

5.4 Scalability on Large Scenes

In the following, we study the scalability of our method on
our largest scene. The results are normalized by the num-
ber of used machines and are summarized in Figure 13. It
is noteable that the CPU-based approach scales nicely with
the growing number of chunks and tracers (c = n). As ex-
pected by the server bottleneck estimate in Section 5.3, the
server is not the limiting component for our 8 tracing ma-
chines. This is reflected by the roughly equal throughput of
the GPU-based and CPU-based server. Since hit point itera-
tions are traced sequentially, their throughput drops as antic-
ipated when increasing the number of chunks and tracers.

Compared with a likewise subdivided MPI Lucy scene
(c = n = 8), our CPU-based DOSPPM achieves a speedup
over CPU-based OSPPM with asynchronous loading of
scene data. Specifically, 1.12 times more photons and 2.92
times more hit points are processed. The speedup is improv-
able by splitting emission jobs, as especially the CPU-based
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Figure 13: Comparison in the MPI Lucy scene with
DOSPPM for purely CPU-based (••) and hybrid (GS) that
is a GPU-based server and CPU-based clients (••). The
throughputs are given for various numbers of chunks c and
tracers n.

tracers spend a particularily long time on hit point emission,
cf. Table 4, which is even longer in larger scenes. In that
case, a client can quickly become a bottleneck.

In practice, one would subdivide the scene into as few
chunks as possible. Thus, for the CPU-based approach, we
can use fewer chunks due to more available memory and
therefore have less portal overhead compared to the GPU-
based method. When using the largest possible scene, i.e.,
the MPI building, to compare our GPU-based DOSPPM in
the cluster with standard CPU-based SPPM on a single ma-
chine, we obtain a photon speedup of 4.82 and a hit point
speedup of 29.5.

Conclusion For our number of tracers, the GPU and CPU
are likewise appropriate to carry out photon statistics updates
on the server. However, when working on larger clusters, a
GPU-based server is highly advisable, since it scales far bet-
ter as explained in Section 5.3. In such a setting, CPUs are
recommended to carry out the tracing on the clients, since far
less chunks are needed due to the amount of available mem-
ory, resulting in less portal overhead. Another issue is the
arising bandwidth limitation, which can be delayed by com-
paction of the transmitted data, e.g., photons and hit points
forwarded between machines.

5.5 Convergence and Optimizations

To verify the correctness of our method, we use the Dragon
scene and compare the standard GPU-based SPPM to our
method, using a subdivision into eight chunks (see Figure
14). Note that we obtain the same caustic pattern without
visible seams, even though the portals cross the glass object.

Figure 14: Comparison of the standard GPU-based SPPM
(left) with DOSPPM (right). The inset shows the subdivision
into eight chunks.

Figure 15 shows the impact of the optimizations in the
GPU-based setting, by disabling them in turn, i.e., no batch-
ing of jobs on the clients, no batching of jobs on the server,
alternately tracing of photons and eye rays (waiting for each
pass to complete), compared to all optimizations enabled.
For multiple chunks, the performance significantly drops if
one of the optimizations is disabled. A CPU-based setting
does not benefit from batching. The non-sequential trac-
ing increases the photon rate by factor 1.1 (c= n= 1), 5.1
(c= n= 2), 4.3 (c= n= 4), and 4.6 (c= n= 8). The hit point
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Figure 15: Optimization impact in GPU-based DOSPPM.

rate behaves as in the GPU setting. When activating pho-
ton culling, we observed a 10−13 % speedup for both MPI
scenes, because of photons culled in invisible scene regions
(rooms). The other test scenes did not show a significant
speedup, since nearly all parts of the scenes were visible.

5.6 Potential Bottlenecks

We observed three classes of potential bottlenecks in our dis-
tributed implementation:

1. It is problematic if the server processes photons too
slowly. Then, jobs are swamping the server’s queue,
whereas the clients start idling. The server cannot com-
mit new jobs until it has processed the currently pending
jobs. This happens when the batching of tracing jobs is
disabled on the server side.

2. The transfer in the network may impose a bottleneck.
In that case, machines are idling more frequently, since
fewer jobs are processed in the same amount of time, as
the jobs’ lifetime is mostly spent on sending.

3. An individual tracer can become a bottleneck, if the scene
geometry is either unequally distributed or tracing jobs
have unequal workload. The latter might occur, if emis-
sion jobs are not split, e.g., the emission of camera rays,
which can be observed in the CPU-based DOSPPM at
large screen resolutions.

The optimal configuration is a sufficient network bandwidth
where the server can process the incoming photons in time.
This configuration was present in all test scenes when using
one tracer per chunk. In the CPU-based setting, the client
tracers were a bigger bottleneck than in the GPU-based set-
ting, thus future optimization efforts will be spent there.

6 Conclusions and Future Work

In this paper, we described the first consistent out-of-core
photon mapping approach and its efficient implementation
based on both CPUs and GPUs in a distributed environment
that reduces scene loading operations and prevents periods
of resource under-utilization. With nine machines working
together, we attained a significant speedup by factor 138
for photon processing and factor 7 for hit point processing
in a distributed GPU-based setting, compared to nine ma-
chines doing GPU-based out-of-core tracing individually. In
a CPU-based setting we achieve a speedup by factor 5 for
photons and 12 for hit points. We demonstrated in our largest
test scene that our method traces in a GPU-based, distributed
system 5×more photons and 30×more hit points than stan-
dard CPU-based SPPM. We extended both the GPU-based
and CPU-based SPPM to work more efficiently in an out-of-
core scenario by first separating the tracing of photons and
hit points and second batching and culling of tracing jobs.
In our network, we employed a server for all photon statis-
tics updates, and multiple clients to do the photon and hit
point tracing in a portal-based, automatically acquired sub-
division of the scene. We found that a hybrid combination of
a GPU-based server and CPU-based clients shows the best
scalability on large scenes and clusters.

We raise a number of challenges for future research. The
maximum number of client machines in our network was
eight. Evaluating the behavior in larger networks is therefore
an avenue of future work, i.e., to inspect the network traffic.
A single server can process only a fixed, scene-dependent
number of clients. The investigation of a server hierarchy or
array is therefore a possible next step. In case of a server ar-
ray, we assume that broadcasting hit points to all servers and
then letting clients randomly select the server to send pho-
tons to would be a better choice than using a screen-space
subdivision, in which each server is responsible for a frac-
tion of the viewport. The latter requires to either broadcast
all photons to all servers, causing bandwidth issues, or to de-
termine on the client side for every photon the servers that
have hit points to which the photon contributes. This in turn
requires the presence of all hit points and range queries on
all clients. The culling of photons could be further improved
by clustering of hit points to find better hull approximations.
We also investigate the inclusion of volumetric illumination
and spectral effects [KZ11]. Even though the scene subdivi-
sion is quite fast compared to the simulation, it can be further
accelerated by using a hierarchy when inserting into the bin-
ning grid and it could as well be parallelized in the network.
So far, we do not trace multiple hit point iterations at once.
This extension requires to weight the hit points, as faster hit
point paths are updated more frequently, which would re-
sult in a non-uniform sampling. Our automatic scene subdi-
vision strives for an equal size of the chunks, but does not
take into account the resulting workload. Considering the
room topology of indoor scenes would be of help to guide
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the portal placement, cf. Fradin et al. [FML06] and Horna
et al. [HDMB07]. Taking into account the visibility of light
sources after a certain number of indirections could be used
to cull lights whose photons never reach the viewed area.
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