
Chapter 1
Finite Time Steady 2D Vector Field Topology

Anke Friederici, Christian Rössl, and Holger Theisel

Abstract
Vector Field Topology describes the asymptotic behavior of a flow in a vector field,

i.e., the behavior for an integration time converging to infinity. For some applications,
a segmentation of the flow in areas of similar behavior for a finite integration time
is desired. We introduce an approach for a finite-time segmentation of a steady 2D
vector field which avoids the systematic evaluation of the flow map in the whole
flow domain. Instead, we consider the separatrices of the topological skeleton and
provide them with additional information on how the separation evolves at each point
with ongoing integration time. We analyze this behavior and its distribution along
a separatrix, and we provide a visual encoding for it. The result is an augmented
topological skeleton. We demonstrate the approach on several artificial and simulated
vector fields.

1.1 Introduction

Vector Field Topology has been established as one of the standard approaches to
visualizing steady vector fields. Its main idea is simple and appealing: separate the
field into regions of similar asymptotic flow behavior. This way, even complex flow
structures can be represented by a low number of graphical primitives. In addition
to this separation, Vector Field Topology has an attractive property in terms of
computation: to get the whole segmentation, it is not necessary to consider every
point in the domain. Instead, only a few points in the domain have to be touched
(critical points, boundary switch points), and a few special stream lines starting from
these points (separatrices) have to be computed.

Several approaches have been proposed to extend Vector Field Topology to
unsteady fields. The main problem for this is that an asymptotic behavior cannot be
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analyzed any more: unsteady fields usually allow an integration over a finite time
only. Lagrangian Coherent Structures (LCS) provide such a segmentation of the field
after a finite integration time. The perhaps most prominent example for LCS are
ridge structures in Finite Time Lyapunov Exponents (FTLE) fields. In general, LCS
computation requires a dense computation of the flow map in the whole domain.

In recent years there are approaches to compute LCS of unsteady fields by us-
ing steady Vector Field Topology [1, 42]. The main idea is to subtract a certain
background flow field (or consider a certain reference frame) and reduce this way
the computation of LCS of an unsteady field to the computation of steady Vector
Field Topology. While these approaches are appealing, they have a fundamental
problem: a segmentation for a finite integration time is computed by considering
the asymptotic behavior of another flow, i.e., by considering an integration time
converging to infinity. In general, integrating a (modified) field until infinity should
not be considered for unsteady fields because it works with information that is not
present in the data.

This paper solves the problem mentioned above: we present an approach to a finite
time flow segmentation in a steady 2D field where we do not have to evaluate the
flow map in the whole domain. (By applying a flow map evaluation everywhere, the
potential advantage of the approaches in [1, 42] is lost; in this case one could do an
LCS analysis of the original field directly without subtracting a certain flow.) We start
with the assumption that the relevant separation takes place along the separatrices
even for a finite integration time. For them, we compute the separation perpendicular
to the flow either in a local or in a discretized global way. The results are characteristic
functions (here called separation functions) which provide information about the
separation along a separatrix. After evaluating these functions for a finite time and
setting them in relation to their behavior when integrating towards infinity, we provide
a simple visual encoding for them. In summary, we keep the benefits of steady vector
field topology, which is stable and well-defined, while adding a scalar separation
quantity.

1.2 Related Work

Topological methods for 2D vector fields have been introduced to the visualization
community in [10]. Later they were extended to higher order critical points [28],
boundary switch points [2], and closed separatrices [43]. In addition, topological
methods have been applied to simplify [2, 3, 34, 35], smooth [41], compress [18,
17, 32] and construct [31, 38] vector fields. 3D topological feature are considered
in [6, 11, 19, 20, 33, 37]. State-of-the-Art-Reports on topological methods for flow
visualization can be found in [13, 14, 21].

Topological methods can be applied only to steady vector fields because they
require an integration until infinity. For unsteady fields, Lagrangian Coherent Struc-
tures (LCS) have been established to find regions of homogeneous flow behavior.
One of the most prominent approaches for this is the computation of ridge structures
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in FTLE fields, as introduced by Haller [7, 9]. To consider spatial separation only,
Pobitzer et al. [22] weighted FTLE values by their angle to the separation direction.
FTLE ridges were proposed for a variety of applications [8, 15, 30, 40]. Shadden
et al. [29] showed that ridges of FTLE are approximate material structures, i.e.,
they converge to material structures for increasing integration times. This fact was
used in [27, 36] to extract topological structures and in [16] to accelerate the FTLE
computation in 2D flows. Also in the visualization community, different approaches
have been proposed to increase performance, accuracy and usefulness of FTLE as a
visualization tool [4, 5, 23, 25, 26].

In recent years approaches have evolved that aim at finding suitable moving frames
of the underlying coordinate system to study the flow [1, 42]. This way, finite-time
studies of time-dependent fields is lead back to a topological analysis of a derived
steady field. This paper targets towards these approaches: by being able to analyze
the finite-time behavior of steady fields without a dense sampling of the flow map,
we make steady topology an appropriate tool also for a finite-time analysis.

1.3 The Approach

We start with an argumentation why we restrict the search for separating structures
in steady flows to separatrices, i.e., the separating structures for integration times
converging to infinity.

While it is not formally proven yet that separatrices and separation structures of
LCS methods coincide [24], they behave similarly in general. The FTLE field and
topological skeleton of our most complex dataset is shown in Figure 1.9. As can be
seen, the FTLE ridges and separatrices overlap.

(a) FTLE (b) Topological skeleton (c) Combined image

Fig. 1.1: FTLE field and topological skeleton of the ocean dataset. a) Maximum of
forward and backward integrated FTLE. b) Topological skeleton integrated start-
ing from the saddles. c) Topological skeleton superimposed on FTLE image. The
separatrices coincide with the FTLE ridges.
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Notation

In the following, we consider a 2D steady vector field v. Let J be its Jacobian. We
assume that J is bounded, i.e., ‖J‖ does not exceed a certain fixed maximal value in
the whole domain. Furthermore, let φ(x,τ) : R2×R→ R2 denote the flow map of v.
Then a stream line is a parametric curve φ(x,τ) starting from x. The gradient of the
flow map is denoted ∇φ . Furthermore we use the normalized perpendicular vector
field

w(x) =
1
||v||

(
0 −1
1 0

)
·v(x) . (1.1)

Note that w has unit length and is defined for non-critical points only. This is not a
serious restriction because stream lines starting in critical points do not leave them
and are not considered.

1.3.1 The separation function for stream lines

Given a stream line, we analyze the separation along it. For this we focus on a
separation perpendicular to the flow while removing the separation along the flow. To
consider the separation along the stream line φ(x,τ), we integrate a second stream
line φ(x1,τ) with the starting point

x1 = x + ε1 w(x)

Then we consider ε(τ) as the distance of φ(x1,τ) to the straight line φ(x,τ) +
λ v(φ(x,τ)) for λ ∈ R:

ε(τ) = w(φ(x,τ))T (φ(x1,τ)−φ(x,τ)).

Figure 1.2 illustrates this. We define the separation function of the stream line φ(x,τ)

ε1

x

x1

w(φ(x,τ))

ε(τ)

φ(x1,τ)

φ(x,τ)

Fig. 1.2: Configuration for defining s(x,τ)

as
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s(x,τ) = lim
ε1→0

ln
ε(τ)

ε1
. (1.2)

Keeping in mind that

lim
ε1→0

φ(x1,τ)−φ(x,τ)
ε1

= ∇φ(x,τ) ·w(x) ,

(1.2) can be written as

s(x,τ) = ln
(

w(φ(x,τ))T
∇φ(x,τ) ·w(x)

)
. (1.3)

Eq. (1.2) already gives a way to numerically compute the separation function: choos-
ing a sufficiently small ε1 for estimating the directional derivative of φ , the term
ln ε(τ)

ε1
is an approximation of s. However, its computation depends strongly on the

choice of ε1. If ε1 is too small, (1.2) may run into numerical problems. If ε1 is too
large, x1 tends to move out of the linear neighborhood of x. Fortunately, there is a
localized version of s which avoids a discretization of the directional derivative of
the flow map:

s(x,τ) =
∫

τ

0
w(φ)T J(φ)w(φ) dr (1.4)

with φ = φ(x,r). In order to prove that (1.3) and (1.4) are identical, we have to show
that

∂

∂τ

(
ln
(

w(φ)T
∇φ w(x)

))
= (w(φ))T ·J(φ)w(φ)

with φ = φ(x,τ). This can be shown by a straightforward application of elementary
differentiation rules.

Note that (1.4) has some similarities to the local FTLE computation in [12]. In
fact, [12] integrates the gradient of the flow map by a repeated matrix multiplication,
leading to the fact that integrated measures can exponentially grow/shrink with
increasing integration time. Contrary, (1.4) is a repeated addition of scalar values for
the numerical integration.

Also note that s does not necessarily capture the maximal distortion in the neigh-
borhood of a particle. Instead, it describes the distortion into one particular direction:
perpendicular to the flow direction. For the evaluation of s on separatrices only, this
derivative would generally give a close to maximal distortion.

Properties of the separation function: We list some properties of s. They can be
shown by considering either (1.2), (1.3), (1.4).

• s(x,0) = 0 (follows from (1.2) and ε(0) = ε1).
• s(x,τ) grows at most linearly with increasing τ . (To show this, we have to show

that ds
dτ

is bounded. This follows directly from (1.4) and the boundedness of J.)
• s is additive: s(x,τ1 + τ2) = s(x,τ1)+ s(φ(x,τ1),τ2) (follows from (1.4)).
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• For two points x, y on the same stream line, their separation functions differ only
by a translation: let y = φ(x,τy). Then s(y,τ) = s(x,τ + τy)− s(x,τy) (follows
from the point above).

• s is inverted under backward integration: s(x,τ) = −s(φ(x,τ),−τ) (follows
from (1.4)).

1.3.2 The separation function for separatrices

Up to now, the separation function was defined for an arbitrary streamline. In this
section, we show that the separation function has a special behavior for separatrices
induced by a saddle point. Let x be on a separatrix, i.e., φ(x,τ) converges under
forward integration to a saddle point c for τ → ∞. Then s(x,τ) converges to a linear
function for τ → ∞:

lim
τ→∞

s(x,τ) = a τ +b(x) (1.5)

where the slope a is determined by the Jacobian Jc of v in the saddle point c. Let
λ1 < 0 < λ2 be the eigenvalues of Jc and e1,e2 be the corresponding normalized
eigenvectors. Then

a = (e⊥1 )
T Jc e⊥1 (1.6)

where e⊥1 is the vector e1 rotated by π

2 that is perpendicular to e1.
Figure 1.3 gives an illustration. The proofs of (1.5) and (1.6) are obtained by in the

following way: since we are interested in the asymptotic behavior around a saddle,
we can consider a linear vector field having a saddle with the desired Jacobian at the
desired locations. Then the flow map and its derivatives can be written in a closed
form, allowing to show (1.5) and (1.6) by simple computations.

The parameter b(x) can be considered as a measure on how far s is away from
its final linear behavior as τ → ∞. We will use this parameter for characterizing the
separation. Note that for a particular point x on the separatrix, the computation of
b(x) is cumbersome because it requires an accurate integration towards the saddle.
In order to get a more stable computation of b(x), we formulate:

Theorem 1. Given are two points x, y on the same separatrix such that y = φ(x,τy).
Then

b(y) = b(x)+ s(x,τy)−a τy.

The sketch of the proof is in Figure 1.4. Theorem 1 provides a way to compute
b along a whole separatrix: given a saddle point c, we start the integration of the
separatrix at a point x0 = c+ ε0 e1. Note that ε0 has to be chosen small enough such
that x0 can be assumed to be in the linear neighborhood of c. This assumption gives
b(x0) = 0. From this we compute the separatrix by backward integration, i.e., we
consider φ(x0,τ) for τ ∈ ]−∞,0]. This way we get

b(φ(x0,τ)) =

{
0 for τ ≥ 0
s(x0,τ)−a τ for τ < 0
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x

x1

x2 saddle c

τ

integrating towards saddle c

s(x,τ)

b

line aτ +b(x)

x

x1

x2

Fig. 1.3: Behavior of s(x,τ) for a separatrix.

τ

s(x,τ)

b(x)

aτ +b(x)

τy

a · τy

b(y)

τy

s(x,τy)

Fig. 1.4: Sketch for proof of theorem 1

where a is computed as (1.6). Note that b(x) does not depend on the location of x as
long as x0 is in the linear neighborhood of the saddle.

1.3.3 Properties and visualization of b

The number b(x) for a point x on a separatrix is a measure of how the separation
behaves when x is integrated towards the saddle. It gives a measure of how far the
separation is away from the final asymptotic separation after integrating only a finite
time. In a linear neighborhood of the saddle we have b(x) = 0: starting an integration
there leads to an exponential separation that is determined by the eigenvalues of the
Jacobian of the saddle. For x in a certain distance of the saddle, b(x) is a measure
on how far x is from the final exponential separation for shorter integration time.
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Note that b(x) is not a local measure: instead it contains the essence of the separation
behavior for a finite integration time when starting at x.

In order to visualize b, we use the visual metaphor of a wall: instead of a 2D
separating line, we render an extruded 3D surface where its height is connected to
the strength of separation. For this, we introduce as height of the wall:

h(x) = a ek b(x)

where k > 0 is a degree of freedom for the visualization. This way we have h(x) = a
in a linear neighborhood of a saddle, denoting the strength of the local separation
at the saddle. The parameter k indicates how strong the height diminishment of the
wall is when b(x) deviates from 0. A small k gives that the height of the wall reflects
strong deviation of b, a larger k brings the focus on small deviations of b from 0. We
show examples of different choices of k in section 1.4.

1.3.4 Details and implementation

We determine critical points and classify saddles in a preprocess using a standard
method [39]. They determine the starting points of separatrices. The computation
of s(x,τ) requires the numerical solution of an initial value problem. We apply a
standard Runge-Kutta method in two passes. The first step is a standard streamline
integration that yields a discrete curve representation of φ(x,τ) for starting at a
point x0 near a saddle in the initial direction given by some eigenvector of the
Jacobian at the critical point. We use a fourth-order Runge-Kutta method with step
size adaptation that provides the streamline φ as a cubic C1-continuous spline. The
second step integrates the projection of the directional derivative, i.e., we apply the
same Runge-Kutta method for the numerical integration of a scalar field. Finally,
b(y), and thus the height function h(y), is computed by evaluating the separation
function s(x0,τ) for x0 and τy. Note that the evaluation is backwards in time (see
discussion of Theorem 1), i.e., there is no need for a reparametrization of φ or s as
both were in fact computed by backward integration.

For visualization, we use standard line integral convolution to provide a global
overview of the vector field v an underlying image. The separatrices are planar curves
in the image. We lift each separatrix by interpreting the values h(x) as height; this
gives a second curve. We render all curves as tubes and connect the separatrix and
its lifted counterpart by semitransparent surfaces. The critical points are the start
and end points of curves and are emphasized by cylindrical structures with height h.
Figure 1.6 shows an example.
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1.4 Results

We compute and visualize the separation function for a number of vector fields.

Simple example. The first vector field is a piecewise linear function on a small
12×3 grid. The construction of the dataset is shown in Figure 1.5. For each vertex of
the grid, we prescribe a vector such that bilinear interpolation in cells forms source
(left) and saddle (right), and the center region yields a converging flow. The next

x0x1x2x3

saddle csource s

Fig. 1.5: Construction of a simple vector field on a 12× 3 grid with a source and
a saddle and a region of converging flow between. The velocity at the vertices are
interpolated bilinearly within grid cells.

Figure 1.6 visualizes the separation function as described in the previous section. The
white tubes show the separatrix in the plane and lifted by the height function h, and all
pairs of curve are connected by semitransparent walls. Figure 1.7a shows the graph

Fig. 1.6: Visualization of separation function as “height” h. The planar and lifted
separatrices are connected by semitransparent walls.

of the separation function s(x,τ) for the separatrix from the source to the saddle. It
shows, from left to right, that the flow is diverging from the source in the beginning.
Then there is region without separation followed by a region with converging flow.
As the separatrix approaches the saddle, s shows asymptotic behavior of a line. The
graph of h is parametrized over integration time. To visualize the distortion of the
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space-time map τx, Figure 1.5 shows positions of equally spaced samples x0, . . . ,x3
of the separatrix, and Figure 1.7a shows the associated times τvxi .

τ
τx3

τx2
τx1

s(x0, τ)

x0

b(x3)
b(x2) b(x1)

(a) Graph of s(x,τ)

source s saddle c

b
h, k = 0.05
h, k = 0.25

(b) Graphs of b and h for varying k

Fig. 1.7: Behavior of s and h. a) Graph of separation function s along the separatrix.
b) Graphs of two height function h for different values of k. Both heights h are a
exponential function of b, which is also shown.

Figure 1.7b compares the graphs of the height function h for different values of
the user parameter k.
Random Grid. Figure 1.8b shows results for a vector field generated from bilinear
interpolation of vectors that were randomly chosen at the vertices of a 5×5 grid.

Slice of Rayleigh-Bénard convection cells. Figure 1.8a visualizes separation for
a vertical slice through a Rayleigh-Bénard convection. The selected region of interest
shows 16 critical points. The vector field is given as samples on a regular 64×64
grid, which are interpolated bilinearly.

(a) Rayleigh-Bénard convection cell dataset (b) Random vector field

Fig. 1.8: Visualization of two datasets. a) Vertical slice through a Rayleigh-Bénard
convection cell dataset with 16 critical points. b) Separation walls for a random
vector field interpolated on a 5×5 grid.

Slice of an ocean simulation. Figure 1.9 shows one slice from a simulation of
the south pacific ocean. 150 critical points are present, from which 277 separatrices
have been integrated. This number of walls being shown allows for an overall image
of the dataset as well as the analysis of single separating structures. In the front of
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(a) Visualization of the full dataset. (b) Close-up on swirling structures.

Fig. 1.9: Simulated ocean dataset with 150 critical points.

Figure 1.9a the walls are significantly higher than in the back, while the separation in
the regions further away is so small that no wall is visible. This way, the highlight is
set to the relevant structures with high separation.

Figure 1.9b shows a close-up on the walls of some swirling regions. Their behavior
when moving near the critical point varies: some stay on a constant level, while others
show diminishing separation.

1.5 Discussion and Limitations

The separation function s depends on the choice of ε0, which tells how far x0 =
c+ ε0e1 is located from the saddle, which in turn determines, how far the separatrix
is integrated forward in time starting from the source. For ε0→ 0 we have τx0 → ∞.
At the same time we constructed s such that it converges to a linear function as
φ(x,τ) approaches c. The slope of this line decreases for decreasing ε0. However,
the exact slope is not of particular interest: All we require is arriving in the region of
asymptotic behavior of s, which is typically achieved for small ε0. This is because
we are mainly interested in the behavior of b(x), which is invariant to the slope of s
(and hence ε0) and outside the region of asymptotically linear s.

We don’t visualize b(x) directly but use an exponential scaling to obtain the
height function h(x). This scaling introduces additional parameters a and k. The
first parameter a is a global scale, and k steers the exponential fall-off, which puts
emphasis on different ranges of b.

The examples in the previous section range from simple constructed vector field
to one with moderately complex topology. While the proposed method would work
also for more and fairly complex vector fields, the visualization will not “scale” well.
There are two reasons for this. First, the rendering of walls as semitransparent surface
leads to problems with occlusion. This could partially be alleviated by advanced
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rendering techniques, e.g., steering transparency, or simply by displaying height walls
only for selected separatrices. The second reason is more fundamental: Generally,
all topology-based visualization methods are known to work well as long as the
topological structure of the data is not too complex. This is the case, e.g., for noisy
or turbulent vector fields. They typically show a vast number of critical points and
a complex network of separatrices that is not suited for direct visualization. Our
method shares this limitation with other topology-based visualization methods.

1.5.1 Future research

As future research, the approach can be extended to 2D steady divergence-free fields
where a separatrix from a saddle re-enters the saddle again. Also, the finite-time
separation of other separating structures such as closed stream lines and boundary
switch curves should be analyzed. The extension to 3D is a challenging problem.
Here, the finite time behavior of separating surfaces has to be studied. By replacing w
in (1.1) by the normalized surface normal field of the separating surface, all following
computations hold for 3D as well. The actual challenge is the visual representation
of h(x) since a wall-metaphor is not appropriate in 3D.
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