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Abstract

The model of a DOUBLE GYRE flow by Shadden et al. [SLM05] is a standard benchmark data set for the computation of
hyperbolic Lagrangian Coherent Structures (LCS) in flow data. While structurally extremely simple, it generates hyperbolic
LCS of arbitrary complexity. Unfortunately, the DOUBLE GYRE does not come with a well-defined ground truth: the location
of hyperbolic LCS boundaries can only be approximated by numerical methods that usually involve the gradient of the flow
map. We present a new benchmark data set that is a small but carefully designed modification of the DOUBLE GYRE, which
comes with ground truth closed-form hyperbolic trajectories. This allows for computing hyperbolic LCS boundaries by a simple
particle integration without the consideration of the flow map gradient. We use these hyperbolic LCS as a ground truth solution
for testing an existing numerical approach for extracting hyperbolic trajectories. In addition, we are able to construct hyperbolic
LCS curves that are significantly longer than in existing numerical methods.

1. Introduction

The analysis of hyperbolic Lagrangian Coherent Structures (LCS)
is a standard problem in several fields like dynamical systems,
physics and flow visualization. It has been subject of an intensive
research over the last decade. Most modern hyperbolic LCS
concepts consider the gradient of the flow map of a velocity field.
This gradient field is known to be challenging: even if the velocity
field is numerically well-behaved —i.e., velocity and its gradient are
smooth and bounded — the gradient of the flow map can increase
exponentially with increasing integration time, which makes an
extremely careful sampling of the flow map necessary.

Once new techniques for hyperbolic LCS extraction and analysis
are developed, they need to be evaluated for some test data to verify
correctness and accuracy and desired properties empirically before
they can be applied to real world flow data. Such test data should
have the following properties:

e They should have a simple form, ideally as a closed formula.

e They should generate LCS of complexity and fficulty
comparable to what is expected in the real data.

e The ground truth —i.e., the correct locations of the LCS — should
be either known or be trivially computable with high accuracy,
i.e., without consideration of the flow map gradient.

A double gyre is a flow pattern that frequently occurs in
geophysical flows [HS19a, AUO1, SMW99]. In 2005, Shadden et
al. [SLMO5] introduce a simple model of a double gyre that became
a success story among LCS test data sets. It is just a simple closed
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formula of a 2D time-dependent velocity field that produces LCS of
arbitrary complexity. With increasing integration time, length and
density of hyperbolic LCS increase exponentially, which makes the
DOUBLE GYRE a perfect tool for testing hyperbolic LCS extraction
methods. In the remainder of this paper, DOUBLE GYRE refers to
the particular data set in [SLMOS5] rather than to the general flow
pattern.

After its introduction by Shadden et al. [SLMO0S5], the DOUBLE
GYRE became omnipresent in the LCS and flow visualization
literature. (The original paper has been cited more than 1000 times,
a significant subset of them, we estimate several hundreds, use the
DOUBLE GYRE data set.) In recent years there is hardly any paper
on hyperbolic LCS extraction that does not test its methods on
the DOUBLE GYRE. There are even papers [BK17] that use the
DOUBLE GYREwithout mentioning its original source [SLMOS5].
The success of the DOUBLE GYRE as benchmark data comes from
the combination of an extremely simple closed-form description
and an arbitrary complex output in terms of hyperbolic LCS.

Despite its success, the DOUBLE GYRE comes with a significant
shortcoming: Given a certain integration time, the exact positions
of the LCS are unknown. In fact, they can only be computed
numerically by analyzing the flow map gradient, making them
prone to numerical errors.

The key to computing 2D hyperbolic LCS are hyperbolic
trajectories and their local stable and unstable manifolds [HalO0].
In fact, "finite-time Lyapunov exponents and finite strain maps
approximate the set of all global stable and unstable manifolds that
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could be more accurately reproduced numerically if one knew the
exact location of some organizing orbits with strong or, uniform,
hyperbolicity." [HalOO]. Knowing the hyperbolic trajectories in a
velocity field reduces the hyperbolic LCS extraction to a simple
and stable particle integration without consideration of the flow
map gradient. This way, hyperbolic LCS and hyperbolic trajectories
can be treated synonymously: once we have the perfect hyperbolic
LCS, hyperbolic trajectories are part of them. Conversely, if we
have hyperbolic trajectories, the whole hyperbolic LCS can be
obtained almost for free, i.e. by numerical integration that relies
only on the location and not in the derivative of the flow map.

For the DOUBLE GYRE, neither the location of hyperbolic LCS
nor of the hyperbolic trajectories are known in a closed form.
An analysis of the DOUBLE GYRE shows that the numerically
extracted hyperbolic trajectory looks very similar to a sine curve.
However, there is no closed form description of the hyperbolic
trajectories of the DOUBLE GYRE, and hence numerical methods
are necessary to approximate them. Our goal is to make a small
modification of the DOUBLE GYRE that makes its hyperbolic
trajectory a perfect sine curve that can be described as a closed-
from solution. It turns out that such representation can be found and
that this can be done with a reparametrization of the time domain.

In this paper we introduce a new benchmark data set that is
a small modification of the DOUBLE GYRE with the following
properties:

e It should be close to the DOUBLE GYRE and in particular should
have LCS of similar complexity.

e Contrary to the DOUBLE GYRE, the hyperbolic trajectories are
known in a closed form. This allows for computing hyperbolic
LCS by a stable and well-behaved particle integration, i.e.,
without any consideration of the flow map gradient.

We utilize our Modified Double Gyre in an evaluation of existing
techniques for the extraction of hyperbolic trajectories, and for an
evaluation of the quality of existing ridge line extractors in 2D
Finite-Time Lyapunov Exponent (FTLE) scalar fields.

Notation. We denote the DOUBLE GYRE as v(x,¢) = v(x,y,7)
and the corresponding flow map as ¢7(x), i.e., a%q)f(x) =
v(07 (x), +T). We also consider the spatial gradient V¢ = % of
the flow map. The new Modified Double Gyre is named v(x,t) and
comes with its flow map ¢7(x) and its flow map gradient V§. I
denotes the unit matrix.

2. The Modified Double Gyre data set in a nutshell

Given the DOUBLE GYRE v(x,#) [SLMO05, Sha05] as in (7)—(11),
we propose a Modified Double Gyre

V(x,t) =v(X,t+p)

with
— () = arcsin(q)
p=plt) ="
—me sin(r) + arcsin (%)
q=q(t) =

ne(c?sin(r)2 —1)

r=r(t)=ot+d.

This data set has the sine curve

o(r) = (c sin((:)+1>

as ground truth hyperbolic trajectory. For the particular parameter
choice (15) of the DOUBLE GYRE, we set

c=—0.2040811331, d =9.964223388 .

3. Related Work

LCS are coherent trajectory patterns in flows that preserve certain
properties over a (finite or infinite) integration time [Hall5].
Different types of LCS are known [HFB*17]: elliptic (vortex type),
hyperbolic (attracting or repelling), and parabolic (jet core type)
structures. Since the Double Gyre resembles hyperbolic LCS, we
focus on hyperbolic LCS here.

Flow Benchmark Datasets. Several benchmark data sets are
being used in the literature. Some examples for analytical
two-dimensional data sets are the DOUBLE GYREby Shadden
[SLMOS5], multiple variations of the forced Duffing equation
[HS11] [RSPB11] [FH13] and a Bickley jet [RSPB11] [OHH15].
In his papers Haller has also used some simpler, unnamed flows
(e.g. [HalO2a] [Hall1]). Analytical examples for three-dimensional
flows include the ABC-Flow [Mof88], a Rayleigh-Benard-
Convection [LSMO06] or a tornado flow [Cra03]. Moreover there are
several simulated data sets like cylinder flow simulations [GGT17]
[KC93], backward facing step simulations [GSM*14] [BAC93] or
delta wing simulations [PNNS88] [PNNS86]. However, we are not
aware of a benchmark data set that is as widespread as the DOUBLE
GYRE.

Hyperbolic trajectories. Hyperbolic trajectories are the key to
understanding hyperbolic LCS. Haller [Hal0O] defines hyperbolic
trajectories as trajectories (path lines) with a maximal hyperbolicity
time dr, i.e., the trajectory spends a maximal time within an area
where the determinant of the Jacobian of v is negative. In fact,
[Hal00] gives conditions for a trajectory x(¢) to be a HT:

det Vv(x(1),t) < Ofor allz € [tg,t0+ T (1)
1 1
with

30 =i =mo) (7 Y o). o

i.e., the eigenvalues of J are —A; < 0 < A, and the columns of M
contain the corresponding normalized eigenvectors of J, and

M, = min A(r) , k=12 “4)
[tn,t()+T]
o = min | detM]|| Q)
[t0,10+T]
dM
= ma —_— 6
[lo,t(ri‘T] dt ©)

Based on this, a number of approaches for the numerical extraction
of hyperbolic trajectories have been proposed. [HalOO] considers
the local maxima of the hyperbolicity time in both forward
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and backward direction. [USE13] finds hyperbolic trajectories by
intersecting the ridges of forward and backward FTLE. In addition
to these integration-based methods, local methods to get hyperbolic
trajectories have been proposed. Haller [HP98] shows that under
certain conditions the location of critical saddle points of v can
represent hyperbolic trajectories. Machado et al. [MBES16] relate
hyperbolic trajectories to bifurcation lines [PC87], [MSE13] and
present a two-step approach for the extraction: first, the location of
vanishing acceleration a or jerk b of the vector field v are found as
initial values of an optimization which moves in a second step these
initial lines towards a path line of v. This way a localized approach
(i.e., without computing the flow map of v) to get hyperbolic
trajectories is obtained.

Once the hyperbolic trajectories are found, there are several well-
established approaches to compute the corresponding stable and
unstable manifolds [YKY91, MSWIO3]. [MBES16,USE13,SW10]
compute generalized streak lines starting in the neighborhood of
the hyperbolic trajectories.

Finite-Time Lyapunov Exponents (FTLE): FTLE is one of the
most common approaches to define and extract hyperbolic LCS.
Even though its pros and cons are well-studied and a number of
alternative LCS concepts is available, FTLE is still among the most
prominent approaches to extract hyperbolic LCS, in particular in
Flow Visualization. The FTLE is a well known scalar measure, that
describes the temporal "‘stretch"’ of particles released in a flow.
Haller introduced the extraction of ridge structures in FTLE fields,
which correspond to LCS in flow fields [HY00, HalO1, Hal02b].
Shadden et al. [SLMOS5] show that for increasing integration
time ridges of FTLE fields converge approximately to material
structures. A general introduction into LCS and their use for
describing flow dynamics is given in [Hall5], whic explaines how
LCS boundaries can be extracted via FTLE ridges. However it also
states that there are several issues of FTLE in the context of LCS-
extraction.

FTLE and its ridges have been used in various applications:
Lekien et al. [LCM™05] and Coulliette et al. [CLP*07] use FTLE
ridges to describe the pollution process of coastal environments in
bay areas. Andrade-Canto et al. [ACSZ13] use backward FTLE
to predict the behavior of Eddies in the Gulf of Mexico. Wilde et
al. [WRT18] track FTLE ridges by increasing the resolution in
regions where ridges evolve over integration time; they also extract
the ridge geometries. A lot of research is dedicated to improving
performance and accuracy of FTLE ridge computation [GGTHO7,
SP07,GLT*09,SP09, GOPT11,HSW11,PPF*11,SRP11].

Most of the approaches mentioned above restrict themselves to
ridge curves in 2D flows. There are also few approaches that extract
ridge surfaces in 3D flows for moderate integration times. Sadlo
and Peikert [SPO7] present FTLE ridge surfaces where care is taken
on an adaptive grid generation. Schindler et al. [SPFT12] show
both, standard height ridge extraction and C-ridge tracking to get
3D surfaces. [SFB*12] show C-ridge surfaces for an analysis of
revolving doors. Uffinger et al. [USE13] present streak surfaces
as approximations to LCS. Depending on the accuracy of the seed
structures (obtained by extremely high sampling), streak surfaces
and FTLE ridges show strong agreement. [BT13] propose an
adaptive smooth reconstruction of the flow map field from the
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sample points based on Sibson’s interpolation, which gives a more
stable ridge extraction than on the original sampling. The results
could be used as a qualitative ground truth, a quantitative solution
is missing.

Periodic vector fields. Periodic vector fields are a special case for
which the treatment of hyperbolic trajectories is significantly more
simple: they correspond to the identities in the Poincare map with
negative determinant of the Jacobian [HP98,RK94,Wig92]. In flow
visualization, this has been exploited in [STW*06]. We mention
this because the Double Gyre (as well as the new modified Double
Gyre) are periodic; we will use this periodicity for our contribution.

Double Gyre data set. The DOUBLE GYRE data set was
introduced by Shadden et al. [SLMOS5]. It mimics a Double
Gyre pattern, which typically occurs in various geophysical flows.
The core idea was to provide an analytic form of a time-varying
vector field showing such behavior that stays within a rectangular
domain. The paper provides the stream-function, the corresponding
velocity field and studies material transport over extracted LCS.
In the following we list some typical examples that use the
DOUBLE GYRE as a benchmark to show both its importance and
versatility. Germer et al. [GOPTI11] study guaranteed material
separation along LCS. Schindler et al. [SPFT12] evaluate new
ridge concepts for LCS. [BT13] and [WRT18] evaluate adaptive
refinement strategies for the flow map as well as extraction of
ridge geometries. Machado et al. [MBES16] extract LCS via
space time bifurcation lines. Giinther et al. [GKT16] present a
method that computes high quality FTLE ridges and ridge surfaces
based on Monte-Carlo path tracing. Hummel et al. [HBJG16]
analyze an error estimation for Lagrangian representations of flows.
Hofmann et al. [HS19b] extract recirculation surfaces [WRT19]
with the dependent vectors operator in 2D. [FS16] uses the Double
Gyre to study mixing enhancement, while [FP09] considers almost-
invariant manifolds with the help pf the Double Gyre.

The DOUBLE GYRE is given with a set of parameters that can be
altered to influence the behavior of the flow. Although most works
use the original parameters given by Shadden et al. , other versions
exist: For instance, Sadlo et al. [SW10] extend the domain, to
receive a flow field consisting of four rotating gyres. Wilde et al.
[WRT19] provide a 3D version of the DOUBLE GYRE.

LCS ground truth. In order to evaluate the accuracy of techniques
for extracting hyperbolic LCS the results have to be compared to
a ground truth. Preferably the ground truth is given in a closed-
form, to allow for an evaluation for any desired parameter at the
highest possible accuracy. Unfortunately for realistic flow data
sets no such closed forms exist. Kuhn et al. [KRWTI12] provide
artificial non-trivial vector fields with closed-form solutions for the
corresponding FTLE fields. These could be used to (numerically)
determine LCS. While they provide fields with ground truth FTLE
ridges, these ridges are less complex as, e.g., the DOUBLE GYRE
for longer integration times. [RG19] introduces a modification
of the Double Gyre based on a domain deformation. Similar
to [KRWT12], this approach cannot produce LCS of a similar
complexity as the DOUBLE GYRE.
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4. The Double Gyre Flow

The DOUBLE GYRE by Shadden et al. [SLMOS5] is defined by a 2D
time-dependent stream function

y(x,1) = Asin(ntf(x,t)) sin(my) @)
with
flet) =a(t)x® +b(1)x ®)
a(t)  =esin(®r) )
b(r) =1—2¢esin(wt). (10)

Then the DOUBLE GYRE is the co-gradient of y:

v(x,1) = (? _01) vy, (11

which is usually considered within the spatial domain [0,2] x [0, 1].
Note that both v and Vv are bounded. In fact, for x € [0,2] x [0, 1]
we have ||v|]| < 1 and ||Vv|| < 4 for the usual parameter settings
(15). This means that we can expect a numerical integration of v
to be stable, even for longer integration times. Since particles never
leave the domain [0,2] x [0, 1], we can also expect the computation
of the flow map ¢ to be stable. Contrarily, the gradient of the flow
map V¢ experiences an exponential increase in magnitude with
respect to the integration time. This fact makes the exact numerical
computation of V¢ challenging.

The DOUBLE GYRE comes with the time periodicity

2
v(x,t):v(x,l—l-ig) (12)
and the mirror time symmetries
b1 b T b1
— i —1)= — i+t 1
V(X,ZCOJrzco ) v(x,2m+zm+ ) (13)
for any integer i € Z where (13) can be rewritten as
v(x,1) = v(x, w —1). (14)
Usually, the DOUBLE GYRE is considered with the parameters
1 2m 1
- . 0= A= 1
T2 %1010 (15

resulting in the periodic data set with the time period ¢ = 10.
5. The Modified Double Gyre
Our goal is a small modification of the DOUBLE GYRE that makes

a sine curve a hyperbolic trajectory. We consider the particular sine
curve

o) = (g(t)> _ (c sin((;)Jrl) 06

r=r(t)=ot+d.

with

Note that g(¢) has the same periodicity as v, i.e., g(¢) = g(t + i%”)
for any integer i € Z. Also, g(¢) comes with two parameters ¢ and
d, which will be discussed later on.

Our approach to modifying the DOUBLE GYRE is to apply a

“slight” reparametrization in time, i.e., we define the Modified
Double Gyre as

v(x,1) =v(x,1+p), a7

where p = p(t) describes the reparametrization in time. The
function p should have the following properties:

e p should be rather small: the smaller p, the more similar are v
and V.

o p should have the same periodicity as v: p(t) = p(t+i %”) This
ensures that v and v have the same time periodicity.

e p should ensure that g(¢) is a hyperbolic trajectory of V.

Since by definition a hyperbolic trajectory is a path line of v, we
need to solve

g = V(e),1) =v(gt).r +p) (18)
for the unknown function p = p(¢). Fortunately, (18) has a closed-
form solution:

__arcsin(q)
o

p=p(1) —1 (19)

with

—mc sin(r) + arcsin (m/ii‘;s(r))
ne (c2 sin(r)2 —1)

The proof that (19) and (20) are the solutions of (18) is in the
appendix.

g=q(t)= (20

It remains to be shown that g(¢) is indeed a hyperbolic trajectory
of V. For this we consider the Jacobian matrix of v along g(¢):

J(1) = Vv(g(t),1) @n
for which it can be shown that it has the form
I = (’g f)h) (22)
with
h=h(t) = Zn\/—c2 2 cos(r)? +A2n? (sin(r) ceq+ %) . (23)

The proof that the Jacobian matrix (21) along g has indeed the form
(22), (23) is in the appendix as well. If we assume

h(t) >0 (24)

for all t € R, (22) gives (1) for arbitrary 7. In other words,
the hyperbolicity time of g(¢) is infinity for both forward and
backward integration, the trajectory never leaves a hyperbolic area.
Furthermore, (22),(24) give for (4)—(6) by

M, =h,, >0, M=1,a=1,B=0. 25)

min

This proves (2). With this the proof that g(¢) is a hyperbolic
trajectory of Vv for arbitrary long integration times under the
assumption (24) is done.

In order to finalize the proof (i.e. to show (24)), we switch
to the particular parameter setting (15) in which the Double
Gyre is usually considered. The function p(r) needs some further
consideration to become applicable. On the one hand, p(¢) contains
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Figure 1: The function q(t) for different choices of ¢ and d Blue:
¢=0.25,d =0; red: c =0.15,d = 0; blue: ¢ =0.15,d = 2; light
blue: ¢ = —0.2040811331,d = 9.964223388. The light blue is the
optimal function q(t) obtained by solving (26). Note that ¢ gives
a (non-linear) scaling and d a domain translation. Also note that
q(t) is not a sine curve.

arcsine functions for which we have to make sure that the
arguments are within the interval [—1, 1], and that — since arcsine is
not injective: all (—1)’ arcsin(x) + i 7 have the same value for i € Z
— we pick the "correct" function value. Moreover, we have to find
the best parameters ¢ and d of the desired hyperbolic trajectory.
To do so, we analyze the function ¢(¢). Figure 1 shows ¢g(¢) for
different parameters ¢ and d. Note that even if ¢(¢) looks similar to
a sine curve, it is not! (If it was a perfect sine curve, (19) would give
that p(¢) = const, meaning that g(r) would be already a hyperbolic
trajectory of v.)

We want to chose ¢ and d such that g(t) comes as close as
possible to a sine curve with periodicity 10. This means that g(¢)
should have a local maximum of 1 at the location = % For this
we need to solve the following system of equations

S5\ dq(5\_
q(i) =L (2) =0 (26)

for the unknowns ¢, d. Unfortunately, we are not aware of a closed-
form solution of (26). However, we can solve (26) numerically
(see the accompanying Maple sheet) resulting in the following
approximate solutions:

c=—0.2040811331 and d =9.964223388 . 27)

This gives the optimal function ¢(¢) that is shown as the light blue
curve in figure 1. Note that it is close to but not exactly the function
sin & If it was, (19) would yield p(t) = 0. Figure 2 (left) shows
a visual comparison of the optimal function ¢ fulfilling (27) and
the function sin %’ The numerical solution of (27) may introduce a
numerical error. This error does not infer the property of v having
the closed form hyperbolic trajectory, but it may affect the distance
of v and v. However, a parameter study shows that the solutions
are stable under perturbations of c,d. Figure 2(right) shows the
function ¢ for perturbed values of ¢,d from (27), revealing that g is
still rather similar to a sine curve.

The remaining problem is the non-injectivity of the arcsine
function. In fact (14) and (12) give that if we have a particular
solution of p(r), the following functions are solutions as well:

p(t)+i10 and 5+i10—2r—p(t) (28)
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Figure 2: left: visual comparison of the function q fulfilling (27)
(red) and the function sin %’ (blue): the functions are similar but not
identical; right: q(t) under perturbations of ¢,d: dark blue: ¢ = -
.20, d = 9.964223389; light blue: ¢ = -.2040811332, d = 9.9; red: ¢
=-.2040811332, d = 10.0; green: q fulfilling (27). All perturbations
are similar to the sine function.

0.8
0.6

04

Figure 3: The function h(t) for the parameter choices (27), (15) is
positive for any t.

for any integer i € Z. Since we want p(t) as small as possible, we
select the solution with the smallest absolute value.

Once (27) is set, we can consider the correctness of (24). Figure
3 shows a plot of A(t) for for the parameters (27), (15). It shows
that p(r) € [0.8,1.2] for all ¢, i.e., (24) is safely fulfilled. With this
we have finally shown that g(7) is a hyperbolic trajectory of V.

Analysis of p and v After showing that g is a hyperbolic
trajectory of v, we still need to show that v and v are similar,
and in particular that v and v produce LCS of a similar
complexity. For this, we analyze the function p describing the
time reparametrization of v. Figure 4 (left) shows a plot of the
time parameters ¢ + p of V over time time period. It can hardly
be distinguished from a linear function. Figure 4 (right) shows the

function p for ¢ € [0,10], indicating that ||p(¢)|| < 0.006% where
2n

[0
p rather small in comparison to the time periodicity. In fact, | ‘Zl—’; | is
much smaller than 1, which ensures that the time reparametrization
in (17) is always regular [Far97]. Also note that p(¢) is not a sine
function, even though it looks similar. This also shows that the
DOUBLE GYRE does not have a sine curve as hyperbolic trajectory.
If it had, p(¢) would be constant.

is the the time periodicity of v and ¥ respectively. We consider

We further compare v and v. Note that for ¢ = %, v and V are
almost identical because figure 4(right) shows that p is almost zero.
The largest difference between v and ¥ can be expected when ||p||
becomes maximal, e.g., for # = 0. Figure 5 shows the LIC images
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Figure 4: left: the function p(t) +t is almost linear for t € [0, 10];
right: the function p(t) is rather small in comparison to the
periodicity time

Figure 5: LIC of v and V (upper line), height fields of ||v|| and ||¥||
(middle line) for t = 0; height field of |v — V|| (lower line): v and v

are rather similar.

of vand v as well as ||v|| and ||¥|| as height fields for r = 0. Figure
5 (lower line) also shows ||v — V|| being in the range between 0 and
0.01, in comparison to ||v||, ||¥]| being in the range between 0 and
0.3.

The similarity of v and vV does not necessarily mean that they
produce similar LCS because minimal differences in v and V could
be accumulated during the LCS integration. To test this, in figure
6 we compute the FTLE fields for v and v for different integration
times. It shows that v and v give similar FTLE fields. Furthermore,
in figure 7 we give a direct comparison of an FTLE ridge in v and
v for a specific integration time. The position of the ridge differs
only in a small amount. This is an indicator that v gives LCS of a
similar complexity as the Double Gyre v.

We conclude this section with the recommendation: for further
analyses of LCS, it is recommended to replace the DOUBLE GYRE
v by the Modified Double Gyre vV because with this we lose almost
nothing (v and V are similar and produce similar LCS) but win a lot:

the availability of ground truth hyperbolic trajectories and hence
ground truth LCS.

6. Results

The availability of ground truth hyperbolic trajectories allows us to
compute ground truth LCS by computing their stable and unstable
manifolds. For this we use an approach similar to [MBESI16,
USE13,SWI10]: we integrate a generalized streak surface starting
in the neighborhood of g(¢). This way the LCS boundary 1(z,7) is
obtained by

1(1,7) = 0, (gt +7) +ue(g(t +1),t +7)) (29)

where €(x,7) describes the eigenvector corresponding to the
negative eigenvalue of Vv(x,7), and u is a small offset. In order
to extract the LCS, we do not actually integrate a meshed streak
surface as seen in figure 8. Instead, we integrate single path lines
starting at g(t;),t; € [t...t + 1] in backward direction just long
enough that the end point of a single path line reaches time . If the
distance d of two adjacent end points x; and x;;; starting at g(#;)
and g(¢;.1), respectively, exceeds a distance threshold d,;, another
path line will be integrated starting at g(%(t,- +1ti11)). To obtain a
smooth LCS curve this process is repeated until the distance from
x; to its new successor falls below d,;,. Figure 8 illustrates the
construction of the LCS boundaries.

Our ground truth LCS line (29) comes with two parameters T
and u that need to be analyzed. Figure 9 shows 1(0,60) for different
choices of u. Figure 10 shows 1(0,1) for u = le—10 for different
choices of 7. Figure 11 shows the arc length of 1(0, ) for different
choices of u,t. It shows that arc length of 1 shows an exponential
growing on both y and T. While for u this behavior can be easily
explained (a particle needs an exponential time to move away
from a location close to the hyperbolic trajectory), the exponential
dependency on T seems to be a property of the particular data set
and not of general LCS. Note that the exponential dependency on T
appears for larger 1, i.e., when 1 has a certain length due to multiple
foldings.

With the ground truth hyperbolic trajectory we obtain long LCS
boundaries under low computation times: In our tests the longest
computation time was 58 seconds with ¢ = 0.1 and T = 60, which
gives an arc length of about 11,000.

6.1. Evaluation of a FTLE ridge extractor

We apply our ground truth hyperbolic trajectories to evaluate
an existing numerical approach to FTLE ridge line extraction
especially focusing on rather long integration times. It is known
that FTLE ridge lines represent LCS. However, their numerical
extraction is challenging: firstly, FTLE fields tend to have extreme
gradients, making a careful adaptive subdivision necessary to
get a reliable ridge line geometry. Secondly, FTLE can produce
false positives, i.e. ridge lines due to high sheer instead of flow
separation. We consider the particular approach [WRT18]. We
compare the quality of the extracted ridges with the ground truth
LCS of v. Figure 13a shows the FTLE field of v fort = 0 and T = 25
in a color coding similar to figure 6. Figure 13b shows the extracted
FTLE ridge geometry by the approach in [WRT18]. This needs to
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| - -

Figure 6: Comparison of FTLE fields of the DOUBLE GYREYV (top) and the Modified Double Gyre v (bottom) for t = 0.0 and T = 10.0
(left), T = 15.0 (middle) and © = 25.0 (right). FTLE of v and V look rather similar, indicating that V is obtained from v by only a minimal
modification.

Figure 8: Ground truth hyperbolic trajectory line as seed curve
(green) of a generalized streak surface; time slices (red) of the
generalized streak surface correspond to the LCS curve.

be compared with our new ground truth LCS that is shown in figure
13c. The comparison of figures 13b and 13c show that [WRT18]
finds all FTLE ridges but fails to deliver them as connected line
structures. Moreover, [WRT18] find a number of false positives,
i.e., FTLE ridges that are not LCS.

6.2. Evaluation of a local approach to extract hyperbolic

trajectories
Figure 7: Combined visualization of the FTLE fields (top) with ] ] )
close up of selected areas (bottom) of the DoubleGyre Shadden et With the help of the ground truth hyperbolic tra]e({tory we erclluate
al. (red) v and the Modified DoubleGyre v (blue) for t = 0.0 and the local approach [MBES16] to extract hyperbolic trajectories by
T = 20.0. Positions of characteristic FTLE ridges of v and V show relating them to 2D space-time bifurcation lines. It starts with the
only small differences, indicating that both vector fields are rather initial line of vanishing acceleration a = Vvv+v; = 0 or vanishing
similar. jerk b = Vav+a; = 0 respectively as starting values following by

an optimization to move the initial lines towards a path line.

Figure 14 (upper) shows the ground truth hyperbolic trajectory
of V in space-time together with lines a =0, b =0, v =0, and
x = (1,0)7. All of them differ from the ground truth hyperbolic
trajectory. While the line a = 0 as suggested in [MBES16] is closest
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Figure 9: Impact of varying u for fixed © = 60.
u=1le—S8, arc length = 837.985.

Figure 10: Impact of varying t for fixed u = 1e—10. Left: © = 30, arc length = 1502.36. Center: T = 40, arc length = 837.985. Right: T = 60,

arc length = 418.808.

arc length

| | | | |
0% 1078 10 107* 1072

Figure 11: Arc lengths of LCS curves with varying u and < in log-
log plot.

to the ground truth of all candidates, it is not clear if this a general
property or it only holds for the particular data set.

In a second experiment, we started the optimization described
in [MBES16] from the initial lines a = 0, b = 0, v = 0, and
X = (I,O)T. For all the initial curves except b = 0, the optimization
converges towards the ground truth hyperbolic trajectory, as shown
in figure 14 (lower). Also this experiment does not reveal any
special property of the line a = 0.

To further analyze the technique in [MBES16], we analyze if
it guarantees to always find a hyperbolic trajectory. For this, we
consider a simple new test data set w that is different to Vv but is

constructed in the same spirit:

81— (a2 +y%)? (—x—i—cos(z) - 2sin(z))

160 y—sin(r) +2cos(r) (30)

w(x,1) =

that has a hyperbolic trajectory at gyw() = (cost,sinz)” . (To show
that gw is indeed a hyperbolic trajectory w, we need to check that
gw is a path line of w fulfilling (1), (2), which can be shown by
straightforward computations.)

Figure 12 (left) shows the ground truth hyperbolic trajectory
gw(f) in space-time which passes through the intersections of
forward and backward FTLE ridges at times typ = —5, #; = 0 and
t) = 5. The center column of figure 12 shows the lines a = 0
(orange) and b = 0 (purple). This is possible by omitting the
solutions located at the circle with radius » = 3 (gray cylinder in
space-time) where a and b are also equal to 0. The right column
of figure 12 shows that the application of [MBES16] to a = 0 and
b = 0 does not converge to gw.

With this, figure 12 is a counterexample that [MBES16] always
finds hyperbolic trajectories.

7. Discussion

This is perhaps not a usual CGF paper because it neither describes
a new technical contribution nor a classical application, system or
evaluation. As such, it does not fit into any standard category of
Visualization or Computer Graphics. However, we believe that the
introduction of a new benchmark data set with provable properties
— closed-form ground truth hyperbolic trajectories — is useful for
testing new techniques for extracting LCS and this way brings Flow
Visualization forward.

The new data set focuses on forward LCS. A very similar
approach can be applied to treat backwards LCS: a slight time-
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Figure 12: Left: ground truth hyperbolic trajectory gw(t) =
(cost,sint)T of w(x,t) counterexample in green passing through
intersections of forward and backward FTLE ridges at times ty =
=5, 11 =0 and t, = 5. Gray cylinder has radius r = 3. Center
column: a = 0 (orange) and b = 0 (purple) of counterexample
with ground truth hyperbolic trajectory Right column: application
of [MBES16] to a =0 and b = 0 after 1000 iterations. Botha =0
andb = 0 do not converge to the ground truth hyperbolic trajectory.

reparametrization ¥ of v to have the curve
/oo /
¢ sin(r'(t))+1
gm:( ') )

as bifurcation line. With this we can even construct a test data
set with ground truth hyperbolic trajectories for both forward and
backward LCS:

F=(1—y)v+y¥

However, note that v is no longer a time-reparametrization of v
anymore.

While v has a ground truth hyperbolic trajectory, the
computation of the LCS boundaries still requires a numerical
integration. While this can be considered to be stable — it involves
only the flow map and not its gradient — it would be nice to have a
non-trivial data set similar to v where the whole LCS line is given
as a ground truth closed form curve. At present, we are not aware
of any such solution.

Acknowledgements This work was partially supported by DFG
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Figure 13: Comparison between LCS extracted by FTLE ridges
and the ground truth. (a) FTLE field for the Modified Double Gyre
data set with overlay of the ground truth LCS (red) (note: domain
was extended to [—0.1,1.0] x [0.0,2.0] to better visualize the LCS
origin). (b) FTLE ridges extracted by the approach in [WRT18] (c)
ground truth LCS

Appendices

Proof that (19) and (20) are the solutions of (18):
We rewrite the Double Gyre by Shadden et al. (7)—(11) by

a=a(t) = esin(wr) Gh
f=Fot) =x+ax(x—2) 32
_df _ -
fe =G = 1+2a(e= 1) @3
y(x,t) =Asin(nf) sin(my) (34
_(—wy\ _ [—Ansin(nf)cos(ny)
V(X,t) - ( \ljxy> - <Aﬂ:fx COS(ﬂ:f) SiIl(TC}’)) a
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0

10

Figure 14: Lines of V. green: ground truth hyperbolic trajectory, red: V=0, orange: a = 0, purple: b =0, black x = (I,O)T. All curves lie
in the plane y = 0. Bottom: V=10, a =0 and x = (l,O)T (left) converge to the groundtruth hyperbolic trajectory. b = 0 does not converge

(right).

which is identical to (7)—(11). Based on this, the Modified Double
Gyre (17) writes as

a=esin(w(t+p)) (36)
f=x+ax(x—2) (37
fi=1+2a(x—1) (38)

_ _ [ —Amsin(nf) cos(my)
vix,1) = (Anfxcos(nf) sin(ny)) ’ (39

Observing v along the ground truth curve g(7) = (g(()t) ) as defined

in (16), we realize that the second component of g is always zero,
giving the following description of V(g(t),):

f=g+ag(g—2) (40)
wtalo)n) = (AR, @1

Since d%—(;) = <c(,oc(())s(r)) , (41) gives that (18) is fulfilled for

—Amsin(nf) = Ansin(nf — 1) = cocos(r) (42)

which is equivalent to

cw cos(r))

arcsin ( Arn

F= - +1. 43)

Rewriting (40) and keeping g = ¢ sin(r) + 1 in mind gives

_ f—ecsin(r)—1

= 44
Tz sin(r)2 — 1 “9
Inserting (43) into (44) gives

. [ cocos(r)
arcsin —Arn

(2 sin(r)2 — 1)

—Tesin(r)
a=

(45)

Rewriting (36) gives

arcsin (g)
0}
(45) and (46) prove (19) and (20) for g = g

~

(46)

Proof that the Jacobian matrix (21) along g has the form (22),
(23)

Starting from (39), we compute the Jacobian of the Modified
Double Gyre as

J(x,1) =VV(x,t) = (47)

—An? frcos(nf)cos(my)  Asin(nf)m sin(my)
—Amsin(my) w AT fcos(nf) cos(my) )

Observing J along the ground truth curve g(t), we use again the
fact that the second component of g(z) is zero, resulting in

J(1) = (g _0}_1) (48)

with
fo=1+2a(g—1) (49)
h = — An® f cos(nf). (50)

With this it remains to show that & = A as defined in (23). For this
we insert (16), (40), (49) into (50), resulting in

h=—2Acos (7t(c7(sin(r)zc2 —1)+ecsin(r)+ 1)) n (dcsin(r) + %) .

Then (45) and g = £ gives h = h for A > 0.
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