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Abstract
Finding static visual representations of time-varying phenomena is a standard problem in visualization. We are interested in
unsteady flow data, i.e., we want to find a static visualization — one single still image — that shows as much of the global
behavior of particle trajectories (path lines) as possible. We propose a new approach, which we call steadification: given a
time-dependent flow field v, we construct a new steady vector field w such that the stream lines of w correspond to the path lines
of v. With this, the temporal behavior of v can be visualized by using standard methods for steady vector field visualization. We
present a formal description as a constraint optimization that can be mapped to finding a set cover, a NP-hard problem that is
solved approximately and fairly efficiently by a greedy algorithm. As an application, we introduce the first 2D image-based flow
visualization technique that shows the behavior of path lines in a static visualization, even if the path lines have a significantly
different behavior than stream lines.

1. Introduction

Many objects considered in Visualization are time-dependent, i.e.,
they change appearance and behavior over time. Creating visualiza-
tions of time-dependent phenomena has always been a main chal-
lenge in visualization. An obvious and straightforward approach
is the use of animations: the object is visualized at a certain time
t, where t varies monotonically or is varied interactively. While
this gives a natural interpretation of the time-parameter — time
is mapped to time — animations come with an overhead in com-
putation, storage, and perception. For this reason, the search for
static visualizations of time-dependent objects has always been a
hot topic in visualization [AMST11]. Examples include static vi-
sualizations of time-dependent trees [KW19], stories [LWW∗13],
graphs [BBDW17], and scalar fields [BGH01].
In this paper, we focus on static visualizations of time-dependent
vector fields, which usually describe flows. Given an unsteady vec-
tor field v(x, t), we search for static visualizations that describe as
much as possible of the dynamic behavior of v. In order to re-
fine this rather general description, we introduce the following con-
cepts.
Time-local vs time-global visualizations: A static visualization is
time-local if it encodes only information of v at a certain time t0.
Time-local visualizations cannot encode the dynamic behavior of
an object (unless t0 is varied in an animation, which is not con-
sidered here). Contrarily, a time-global visualization encodes in-
formation of v from the complete temporal domain. As such, time-
global techniques have the potential to encode dynamic behavior of
v. Note that there are also intermediate cases where in addition to
considering v at t0, either time-derivatives of v or information from
a time interval [t0, t0 +∆t] are considered. We call these techniques
semi-time-local.
Characteristic integral curves in v: A common class of flow vi-

sualization techniques shows integral curves, namely stream lines,
path lines, streak lines, and time lines. While stream lines are easy
to construct, they fail to show the dynamic behavior of v because
they are time-local. Moreover, stream lines do not exhibit a physi-
cal meaningful property of the flow. Contrarily, path lines describe
the trajectories of massless particles, which makes them a per-
fect candidate for visualizing the dynamic behavior of v. Note that
streak lines and time lines are also time-global, but the cardinality
of streak lines and path lines is much higher than for path lines:
Through every point (x, t) passes only one single path line but a
whole family of streak lines or time lines.
Based on these concepts we refine our problem: We search for static
time-global visualizations that show the behavior of particle trajec-
tories — i.e., path lines — of v. The core idea of our approach can
be phrased in one sentence: Given an unsteady vector field v(x, t),
find a steady vector field w(x) such that the stream lines of w are
the path lines of v. The motivation for this approach comes from the
fact that Flow Visualization is much further developed in the inves-
tigation of stream lines than of path lines. There exists a number of
well-established algorithms that work exclusively on stream lines,
and our approach makes them available to the analysis of path lines.
This way path line visualization may become easier accessible. In
particular, this approach provides solutions to previously unsolved
problems such as 2D image-based flow visualization that depicts
the behavior of particles in one single still image.
We show that finding such vector field w is a nontrivial problem
since it requires a multi-objective optimization in a huge search
space. The optimization problem can be expressed as set cover
problem, and we propose a greedy algorithm for finding an approx-
imate solution. For the actual visualization of w we adapt standard
methods, in particular the well-known LIC technique with an ad-
ditional special treatment of discontinuities of w as well as a color
coding of the time. To the best of our knowledge, this is the first
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Figure 1: Static visualizations of the flow v1 defined in (1) for t = 0. Top
left: UFLIC [SK97] (τ = 0.06), Top right: UFAC [WEE03] (τ = 0.2), and
Bottom: IBFV [Wij02] (τ = π) for step width 0.01 (left) and 0.05 (right).

image-based technique that shows the behavior of particle paths in
a single image.

2. Related work

This section gives a brief review of techniques for the visualization
of unsteady flows. Such techniques can be classified into image or
texture based methods and methods that show path lines.

Texture based unsteady flow visualization Texture based tech-
niques have a long history in flow visualization. Originally devel-
oped for 2D steady flows, a variety of extensions to unsteady flows,
flows on surfaces, or 3D flows have been proposed. A comprehen-
sive state-of-the-art report is given by Laramee et al. [LHD∗04].
Here we restrict ourselves to techniques specialized on 2D unsteady
flows.
Texture based techniques can be classified into spot noise, line
integral convolution (LIC), and texture advection [LWSH04]. De
Leeuw and van Liere [LL99] present an unsteady spot noise ap-
proach where spots are modeled following the particle paths. The
first approach to extend LIC to unsteady flows is the unsteady LIC
approach by Forssell et al. [For94, FC95]. There, the convolution
kernel follows path lines instead of stream lines. The temporal co-
herence of unsteady LIC was improved by the UFLIC approach by
Shen and Kao [SK97], which scatters particles along path lines and
spreads this way their contributions. Later, more efficient versions
have been developed like AUFLIC [LMI02] or GPUFLIC [LTH06].
DLIC [Sun03] was developed by Sundquist as a framework for the
advection of stream lines over particle paths.
Texture based techniques are based on a forward or backward
advection of noise textures. Image-based flow visualization by
van Wijk [Wij02] is a rather general approach, which is based
on forward advection and blending of subsequent images. This
approach is able to resemble several other techniques by choice
of parameters. Lagrange-Eulerian Advection (LEA) by Jobard et

al. [JEH00] combines Eulerian and Lagrangian view points in a
texture advection approach. UFAC by Weiskopf et al. [WEE03] ad-
vects and deforms stream line patterns steered by the trajectories of
path lines. Carnecky et al. [CSFP12] introduce a multilayer dense
flow visualization for unsteady flows on time-dependent surfaces.

Path line seeding Another general approach to static visualization
of time-dependent flows is the selection and rendering of a care-
fully chosen set of path lines. While stream line selection [JL97]
is a well-established approach that has been extended to time-
coherent stream lines in unsteady flows (see [JL00]), the selection
and rendering of suitable path lines is less intensively researched.
McLoughlin et al. [MET∗15] present an approach to path line seed-
ing based on local importance measures. Weinkauf et al. [WTS12]
select path lines with a minimal number of intersections in the vi-
sualization. Marchesin et al. [MCHM10] present view dependent
stream line selection by adding 3D stream lines from a precom-
puted set. Their method considers both, the footprint of the already
chose lines and the local properties of the new lines. Günther et
al. [GRT14] aim at rendering large sets of path lines and resolve
visual clutter by computing opacity values based on a global view-
dependent optimization. Hlawatsch et al. [HSJW14] present glyph
representations of selected path lines.

3. An analysis of image-based visualization of 2D unsteady
flows

Image-based techniques are an extremely successful tool for the vi-
sualization of steady 2D vector fields, and consequently they have
been extended and emerged as a standard method for visualizing
unsteady 2D flows. Given this practice, the following statement
may come surprisingly:

Statement 1 Existing techniques for texture based flow visualiza-
tion are unable to show the behavior of path lines in a static visual-
ization unless they are similar to stream lines.

This means that existing texture based techniques cannot repre-
sent the dynamic behavior of an unsteady flow in a static visual-
ization. At first, the statement seems to be counterintuitive and in
conflict with common practice as we see many impressive texture
based unsteady flow visualizations in the literature. We argue that
this impression is due to the fact the considered flows often show
“low unsteadiness”, i.e., stream lines and path lines are rather simi-
lar. A simple examples shows that existing images based techniques
must fail, whenever this is not the case.

Consider the unsteady field v1 : R2×R→ R2 with

v1(x, t) =
(

cos t
sin t

)
. (1)

The following properties hold for v1:

• All stream lines of v1 are straight lines.
• All path lines of v1 are unit circles.
• v1 is a flow, i.e., it satisfies the incompressible Navier-Stokes

equation with the pressure field p(x, t) = x sin t−ycos t with x =
(x,y)T .

This makes v1 a perfect benchmark for any texture based technique:
If the visualization shows unit circles or arcs of unit circles, we see

© 2020 The Author(s)
Eurographics Proceedings © 2020 The Eurographics Association.



S. Wolligandt & T. Wilde & C. Rössl & H. Theisel / Flow Steadification

path lines. If it shows straight lines only, the technique shows ex-
clusively stream lines and is therefore unable to show the dynamic
behavior of the flow.

Figure 1 shows static visualizations of v1 generated by UFLIC
[SK97], LEA [WEE03], and IBFV [Wij02]: they clearly fail to
present properties of the flow. However, they are successful for dy-
namic visualizations as shown by the animation in the accompany-
ing video.

We close this sections with two remarks. Firstly, several informal
statements that point into the same direction as statement 1 were
made in the literature. For instance, Shen and Kao [SK97] consid-
ered also highly unsteady flows and observed that the more rapidly
the direction of the flow changes the more blurring occurs in the vi-
sualization. In contrast to such empirical observations, the bench-
mark flow v1 allows for a formal study and formulation of state-
ment 1. Secondly, statement 1 holds only for static visualizations —
a single still image — not for sequences of images (e.g.displayed
as time-varying animations). In fact, information about the behav-
ior of path lines can be obtained exclusively from a temporal coher-
ence without any spatial coherence. An example would be observ-
ing the movement of some points over time. In this case, a still im-
age would show a set of individual points. So, existing techniques
use temporal coherence, and this way they have the potential of
showing paths of particles.

4. Formal problem statement and analysis

We consider a flow

v :D× [tmin, tmax]→D with D ⊆ R2 ,

i.e., the spatial domain is possibly unbounded whereas the temporal
domain is restricted to the interval [tmin, tmax]. The path line of v
starting at (x, t) is the parametric curve r(x, t,τ) that is the solution
to the initial value problem

d
dτ

r(x, t,τ) = v(r(x, t, t + τ)) with r(x, t,0) = x

and τ ∈ [tmin− t, tmax− t]. The differential equation describes the
motion of a massless particle in v starting at (x, t).

The stream line of a steady vector field w : R2→ R2 starting at
x is the parametric curve s(x,τ) that solves

d
dτ

s(x,τ) = w(s(x,τ)) with s(x,0) = x ,

for τ ∈ R. Based on these definitions, we formulate steadification
as the following problem:
Given the unsteady flow v(x, t), find fields w(x) and s(x),τmin(x),
and τmax(x) such that for every x ∈ D

s(x,τ) = r(x,s(x),τ) for τmin(x)≤ τ≤ τmax(x) . (2)

In this problem statement, the unknown w is the steady vector
field whose stream lines correspond to path lines of v. The scalar
field s describes a start — or seed — time of the path line in v
that is to be matched by a stream line in w. Finally, the time in-
terval [τmin,τmax] restricts the correspondence of path lines and
stream lines in time. Together, the vector field w and the scalar
fields s,τmin, and τmax represent a steadification of v. We will treat

them as unknowns or degrees of freedom in a search for an optimal
steadification.

In the following we analyze properties of steadification in order
to characterize an optimization problem. We start with the remark
that a steadification is not unique. This is easy to see: In (2), a path
line r is seeded at (x,s(x)). The same path line can be represented
using a different seed, where any point on the curve (x̂, ŝ(x̂)) ∈ r is
a possible seed. Furthermore, the following identities must hold for
all x ∈ D and τ ∈ [τmin(x),τmax(x)] :

v(r(x, s(x), τ), s(x)+ τ) = w(r(x, s(x), τ)) (3)

τmin(r(x, s(x), τ)) = τmin(x)− τ (4)

τmax(r(x, s(x), τ)) = τmax(x)− τ . (5)

The first condition (3) implies that the path line r(x,s(x),τ) does
not have self-intersections for τ ∈ [τmin(x),τmax(x)]. Otherwise, w
would be overdetermined. Since, in general, path lines can have
self-intersections, solutions to (2) are generally not continuous, i.e.,
the respective fields show cuts that separate continuous regions in
space-time. The choice of cuts leaves another degree of freedom
that makes the problem underdetermined. In summary, the solution
of (2) is not unique.

Therefore, we define additional constraints that characterize fa-
vorable solutions from the infinite set of feasible solutions:

1. Prefer long path lines: τmax(x)− τmin(x) should be maximized.
2. Prefer curved path lines: the generated steady flow w(x) should

not be laminar
3. Prefer large continuous regions: The number and length of cuts

should be minimized.

The first requirement is motivated by the fact that for short integra-
tion times stream lines and path lines tend to look similar, which
would focus on local “snapshots” of stream line behavior at cer-
tain times. The longer the integration time the more of the temporal
dynamics are captured. The second requirement ensures that more
interesting regions of the flow are covered. The last requirement is
motivated by the fact that v is assumed to be continuous, hence the
derived field w should also be continuous or at least as continu-
ous as possible. In the visualization, larger space-time continuous
regions give a more global insight into the flow and are easier to
interpret than a solution that is “mosaic-like” or has cuts that are
rather long compared to the enclosed area.

Obviously, the three requirements are competing: the longer the
integration time and the higher the curvature for path lines, the
higher the probability of a self-intersection and hence the need for
introducing discontinuities. We need to find a reasonable balance.
We also note that the additional requirements provide no guarantee
that there exists a unique optimal solution. However, given that the
search space is huge, an exhaustive search is unrealistic anyway. In
the following, we present a discretization of the search space and
an algorithm that uses a greedy strategy. It turns out that, in prac-
tice, we find local optima that lead to good flow steadification that
give meaningful static visualizations.
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5. Flow steadification as an optimization problem

Flow steadification can be modeled as a combinatorial optimization
problem: the Set Cover Problem, one of Karp’s 21 NP-complete
problems [Kar72].

The Set Cover Problem can be summarized as follows: Given a
set U and n subsets Si ⊂ U with i = 1, . . . ,n, decide if there ex-
ists a set cover C =

{
S j : j ∈ {1, . . . ,n}

}
of size |C| = k such that⋃

S j∈C S j = U .

We solve this problem with a greedy algorithm [Chv79]: The al-
gorithm starts with the set of all subsets W = {Si : i = 1 . . . ,n}
and an initial state C = ∅. Then, subsets Si ∈W are iteratively se-
lected, removed from W and added to C until either W = ∅ or⋃
S j∈C S j = U , i.e., a set cover is found. The policy for selection

is picking the subset Si ∈ W that covers the most uncovered ele-
ments, i.e., that minimizes |U \ (C∪Si)| or equivalently maximizes
|C ∪Si|.

An extension of the algorithm equips each Si ⊂ U with a weight
wi. The selection policy changes to picking the subset Si ∈W that
maximizes the accumulated weight ∑S j∈C∪Si

|S j|w j.

We utilize this algorithm as follows. The domain D is dis-
cretized into cells in a regular grid D of dimensions Dw×Dh, i.e.,
U = {x1,x2, . . .xn} consists of all cells represented by their center
points xi. The initial setW is constructed from another regular grid
G that is superimposed over D. This grid is coarser with a user de-
fined resolution Gw×Gh with Gw ≤Dw and Gh ≤Dh. We consider
the edges that span cells and their diagonals in G. Each edge ek ∈G
is used as a seed curve for integration of a path surface Rk in the
flow v(x, t). The start time t0 is fixed to the mean 1

2 (tmin + tmax),
and integration times are τ = 1

2 (tmin + tmax) for forward and−τ for
backward integration. We remark that a similar discretization and
surface integration from seed edges was used for 3d stream surface
selection in [MSRT13]. The projection of a path surface Rk to the
spatial domain covers a set of discrete cells in D. This simple pro-
jection, however, disregards the fact that the spatial pixel can be
covered multiply at different times, because path lines can intersect
in space. In other words, there may appear multiple different vec-
tors v(xi, t) at each spatial position xi ∈ D at different times t. Let
ni denote the number of vectors sampled at xi. We distinguish three
cases when probing Rk at xi: First, xi is not covered before itera-
tion j by any path surface, which means ni = 0. If the path surface
R j covers xi then ttop will be the time when R j passes xi with its
greatest integration length |τ| at xi. Second, ni = 1, and a path sur-
faceRk, k ≥ j passes xi again then tback will be the time whenRk
passes xi with its smallest integration length |τ|. Third ni ≥ 2, and
xi is passed by a path surface Rm, m ≥ k, then the count ni is just
incremented by one. These three cases can easily be implemented
by rendering path surfacesRk and testing cells xi.

Finally, we define the weight wi at xi as follows:

wi =


ai for ni = 1
bi for ni = 2
0 else

Figure 2: Illustration of weights wi in (6) for the case that xi is covered
twice. Left: sin2ϕ = 1. Swirling behavior can be well perceived if a region
is coverered exactly twice. Center and right: sin2ϕ = 0.

where

ai = τi · min{1, κi/κref} ,

bi = ai · sin2
ϕi , and

ϕi = ∠(v(xi, ttop),v(xi, tback)) .

(6)

Here, τi denotes the integration time until xi is reached, and κi is
the unsigned curvature of the path line at xi. Both refer to ttop if
ni = 2. The reference curvature κref is a user-defined parameter.

The rationale of this choice is as follows: Our first goal is to
cover the whole domain. However, a greedy selection for just the
maximum additional cover does not take into account properties of
the flow and would result in an arbitrary choice and thus proba-
bly visualize “uninteresting” path lines. Instead, the weighted set
cover prefers longer integration times and high curvature and pe-
nalizes (anti-)parallel directions when xi is covered exactly twice.
If xi is covered more than twice, “clutter” is assumed. The local
curvature is scaled and clamped, to avoid extreme weights and ar-
tifacts by local curvature outliers. The responsible user parameter
κref also balances the influence of curvature versus integration time.
If xi is covered exactly twice, the angle θi between v(xi, ti,top) and
v(xi, ti,back) is used to map the weight between 0 and 1 for par-
allel and perpendicular flow directions, respectively. The angle is
taken into account for the weight to ensure that swirling behavior is
captured, as this can be well perceived when exactly two areas are
overlapping (see figure 2).

This weighting scheme does not yet take into account spatial
coherence, i.e., the algorithm may select many fragments of path
surfaces, which results more cuts and thus in a cluttered view. To
avoid this, we “boost” the total weight Wi = ∑R j∈C∪Ri

w j of a
path surface Ri: We multiply Wi by a constant c > 1 if the seed
curve of Ri can be joined smoothly with that of another path sur-
face R j ∈ C. This results in testing for neighboring seed edges,
where we assume a sufficiently smooth joint if the smaller angle
θ between two edges is θ ≥ 135◦. Otherwise, if θ ≤ 45◦, or if a
seed edge touches or intersects an already joined seed curve we set
Wi = −∞. Without this penalty, path surfaces with low weight Wi
that would introduce clutter would be “boosted” and preferred for
set cover. Furthermore, we exclude diagonal seed edges that cross
other diagonal seed edges also with a penalty Wi = −∞ (figure 3
bottom center). The different cases for “boosting” weights are sum-
marized and illustrated in figure 3. Section 7 studies the effect of
varying the user parameters, the boost factor c and the reference
curvature κref.
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penalize

boost weight

Figure 3: Configurations of neighboring seed edges in the grid G. Green
denotes a newly added seed edge, and red represents an already present
seed curve. Top row: “boost” Wi by factor c if a new seed edge “smoothly”
continues another seed curve with angle of θ = 135◦ or θ = 180◦. Bottom
row: Set Wi = −∞ if either the angle between a newly added and an al-
ready present seed curve is θ ≤ 45◦ (left), or if a new seed curve crosses
another seed edge (center), or if a new seed curve would intersect an al-
ready continued seed curve (right).

The implementation of the overall algorithm is not difficult (see
Algorithms 1 and 2). We use an adaptive fourth-order Runge-Kutta
scheme for the integration of path surfaces. Note that the partial
surfaces that are integrated from single seed edges can be stored
and reused for evaluation by the algorithm similarly as proposed
in [MSRT13]. The path surfaces are rendered such that for every
pixel the weight wi is computed and accumulated to get Wi (before
boost) on the GPU.
The result of this steadification by finding a set cover is a sampling
of the steady vector field w on the domain grid D, i.e., a Dw×Dh
“image” of the selected velocity vectors. This vector field generally
shows discontinuities at cuts between different projected path sur-
faces. We do not need an explicit encoding of location and topology
of these cuts.

Algorithm 1: Framework of the greedy set cover algorithm.
Algorithm: greedy_set_cover

Input : discretization D, desired_coverage, c, κref
Output: steadification of v
coverage← 0; best_weight←−∞;
best_edge← NONE; used_edges← ∅;
unused_edges←{e ∈ D.edges};
do

best_edge← NONE;
best_weight←−∞;
for e ∈ unused_edges do

w← measure_weight(κref, e, used_edges);
// (see Algorithm 2 for description measure_weight)
w← w · boost(w, c, e, used_edges);
// (see Figure 3 for explanation of boost)
if w > best_weight then

best_weight← w; best_edge← e;
end
if best_edge != NONE then

used_edges.enqueue(best_edge);
unused_edges.remove(best_edge);
coverage← update_coverage(used_edges);

end
end

while (coverage < desired_coverage
AND best_edge != NONE);

// generate w, s, τmin and τmin from the path surfaces seeded at the
edges e ∈ used_edges

Algorithm 2: Calculation of a path surface’s weight depending on
previously added path surfaces seeded at the grid edges stored in “un-
used_edges”. A rasterization R consists of fragments at discrete posi-
tions. A fragment f saves a list of attributes describing path surfaces at
their corresponding spatial and temporal position. While rasterizing a
path surface each fragment’s list gets sorted from |τ| to 0, where the
first element in f is related to the highest |τ|.

Algorithm: measure_weight

Input : κref, unused_edge, used_edges
Output: edge_weight
// Initialize rasterization R with empty lists.
// Initialize weight_map with {0,0,...}.
for e ∈ {used_edges, unused_edge} do

P← integrate_pathsurface(e);
PR← rasterize(P);
R.insert(PR);

end
for f ∈ R do

a← f.first.τ * min(1, f.first.κ / κ_ref);
phi← angle(f.first.velocity, f.last.velocity);
b← a · sin2(phi);
if f.size == 1 then

weight_map[f]← a;
else if f.size == 2 then

weight_map[f]← b;
else

weight_map[f]← 0;
end

end
edge_weight← accumulate(weight_map);

6. Static Visualization

We utilize a modified line integral convolution (LIC) [CL93] al-
gorithm for static visualization. We apply LIC on the normalized
vectors of the field w using a GPU-implementation with a fixed-
size fourth-order Runge-Kutta integration and a steps size equal to
half pixel size. We consider a pixel as a discontinuity when the for-
ward and backward difference in x- and y-direction at the position
of this pixel differs by a value of 0.5. In contrast to the standard
LIC algorithm, we stop integration between adjacent cells xi and
x j of the stream line if either xi or x j are marked discontinuous.
Effectively, this means that there is no integration and no convolu-
tion across cuts, which are treated “image based”. In addition, we
color-code the integration time τi using a predefined color — white
in our examples — when xi is uncovered.

7. Results

We demonstrate steadification for two analytic flows and three data
sets from simulations and provide a parameter study for the ‘boost”
factor c and reference curvature κref. All timings were measured on
a computer with an Intel Core i7-7700K CPU at 4.2GHz, 32GB
memory and a NVIDIA GeForce GTX 1080 GPU.

Test field v1. The test data set v1 is introduced and discussed in
Section 3. There we also have shown that existing texture based
flow visualization techniques are unable to show the behavior of
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0 2π

Figure 4: Test field v1 (1): Left: View-dependent reduction of random
path lines using [MCHM10] (top: 100%, bottom: 10%). left: Steadification
(21×21 seed grid, κref = 15, c = 2. iterations), color coded with time t.

path lines in a static image. Also, a naive seeding of path lines fails
due to the large number of intersections of path lines. Figure 4 (left
column) shows path lines with different densities, the bottom row
shows careful selections of lines by [MCHM10].

While in both path line visualizations the multiple intersections
of the path lines indicate a highly unsteady behavior, a further char-
acterization of this behavior hardly seems possible.

Contrarily, our visualization (Figure 4, right) clearly shows dis-
tinct and coherent arcs of unit circles as path lines. Also, the dis-
continuities of w across cuts are visible. The computing time for the
steadification was approximately 5 minutes. As — to the best of our
knowledge — this is the only existing texture based technique that
clearly shows arcs of unit circles and therefore the behavior of path
lines. Due to the simplicity of v1, the cuts — i.e., the linear regions
of discontinuities in w — do not have a physical meaning. They
result from the specific parameter setting and initial state of the set
cover algorithm.

To the best of our knowledge, v1 has not been used in the litera-
ture as benchmark data set. Due to its simplicity and clear distinc-
tion of stream lines and path lines, we consider the introduction of
this benchmark data set a contribution of this paper.

Double Gyre. The double gyre is a synthetic data set, which
was introduced by Shadden et al. [SLM05]. Particles advected in
the domain [0,2]× [0,1] never leave this domain. Since its intro-
duction, the double gyre has become a successful standard data
set for flow analysis, in particular Lagrangian coherent structures
(LCS) [Hal15] and Finite Time Lyaponov fields [HY00, Hal01].
For this reason, many versions of LCS visualizations of the double
gyre can be found in the literature. Contrarily, the data set is usu-
ally visualized only by standard techniques for certain time slices.
Static visualizations of the double gyre which exhibit the dynamic
behavior of path lines are rarely shown in the literature. Figure 6
(top left) shows a LIC visualization of a (steady) time slice that
is unable to depict the dynamic behavior. UFLIC (top right) looks

similar to standard LIC. A random selection of path lines (middle
left) shows that the data set is indeed time-varying. Middle right
shows careful selections of lines by [MCHM10]. It does, however,
not provide information about the global dynamic behavior. Our
result (Figure 6, bottom) clearly shows long particle trajectories
in the texture that is coherent for long integration times. Also, re-
gions of self-intersection path lines are visible, and along the cuts
discontinuities of w are clearly visible. The computing time was
approximately 5 minutes.

Cavity flow. The cavity data set is a vector field describing the
flow over a 2D cavity. This data set was kindly provided by Cara-
ballo et al. [CSD03] and B. Noack and I. Pelivan. 1000 time steps
were simulated using the compressible Navier-Stokes equations.
The flow exhibits a non-zero divergence inside the cavity, while
outside the cavity the flow tends to have a quasi divergence-free
behavior. The data is almost — but not perfectly — periodic with a
period of about 100 time steps in length, and only the first 100 time
steps are shown. This gives a resolution of 256× 96× 100. In vi-
sualization, this data set has been analyzed in [TWHS05, WRT18].
Cavity flows, i.e., laminar flows passing over an open cavity, are
of interest in many applications in engineering, ranging from the
small cavities due to gaps in the body work of vehicles, over the
shapes of river channel beds, or cargo bays on aircraft, to the large
scale flows in urban street canyons.

Figure 7 (top) shows a LIC image of a time slice at t = 5. Our
steadification (bottom) shows a fairly steady flow outside the cavity
but a highly unsteady behavior — including many intersection path
lines — inside the cavity. This is an example with a non-convex
domain. The computing time was approximately 5 minutes.

User parameters. The steadification algorithm requires several
parameters. The first choice are the dimensions of the seed grid G.
We show a variety of grids for the different examples. Generally,
this grid is chosen rather coarse, e.g., in the order of 30 to 100
for the longer side of a rectangular domain. We found that the al-
gorithm is not very sensitive to the particular choice. However, a
very coarse seed grid is likely to restrict the search space too much,
while an excessively fine grid leads to a significant increase in com-
putation times without significant benefit.

There are essentially two scalar user-parameters, the boost factor
c > 1 and the reference curvature κref. Higher c leads to longer seed
curves and thus larger continuous regions at the cost of losing tem-
poral detail. Higher κref prefers path lines with higher curvature
and thus more possibly interesting detail at the cost of more dis-
continuities. Figure 5 shows a table with different choices, which
illustrates these properties for the DOUBLE GYRE. As a recommen-
dation, the boost factor should be selected at least slightly above 1,
we generally recommend to start with 1.5. The reference curvature
depends on the absolute dimensions of the domain — a unit circle
has curvature 1. The particular choice depends on the data set. We
recommend a value of 10−−15 for a domain sized in the order
of the unit square. Table 1 shows the iteration count of the greedy
set cover algorithm required to generate these results. The numbers
show that the choice of parameters does not have very large impact,
the numbers differ approximately by a factor of two.

© 2020 The Author(s)
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Figure 5: DOUBLE GYRE. Results for varying boost factor c (top: c =

1.0, center: c = 1.5, bottom: c = 2.0) and reference curvature κref (left:
κref = 5, right: κref=10, right: κref = 15).

c κref = 5 κref = 10 κref = 15
1.0 207 212 211
1.5 208 129 91
2.0 205 127 87

Table 1: Number of iterations for convergence for generating the results
in figure 5.

8. Discussion and limitations

In this section we discuss various aspects of the steadification ap-
proach.

Is it worth the effort? Flow steadification is fairly expensive and
requires significant computation time. We argue that steadification
is a preprocess that is carried out and stored once for an unsteady
data set. Once computed, it can be visualized by — possibly inter-
active — standard techniques for steady flows.

2D vs. 3D Flow steadification aims at 2D steady visualizations of
a 2D unsteady flow. An alternative approach is to interpret the 2D
unsteady flow as 3D steady flow by introducing time as third spatial
dimension. While this allows for making use of standard 3D steady
visualization techniques, it also inherits their potential problems:
ambiguities in the projection and visual clutter. The question of 2D
techniques vs. 3D techniques has been intensively discussed in the
visualization community, leaving a number of arguments for using
2D visualizations whenever possible. For 2D time-dependent flows,
this means that flow steadification is a 2D technique supplementing
3D steady techniques.

Can flow steadification miss features? Flow steadification is not
a feature based technique. Features are not explicitly extracted and
are therefore not guaranteed to be presented. An example where
feature omission cannot be avoided is when different features pass
the same location at different times. Then it is clear that only at
most one of them can be seen in the steadification.

There is, however, some evidence that features are visible in a
flow steadification: for instance in regions of vortices, the path sur-
faces show an extreme curvature, which leads to a larger number of
integration stops and cuts — i.e., linear regions of discontinuities
— in the steadification.

0 10

Figure 6: DOUBLE GYRE. Top left: Standard LIC at time t = 2.5. Top
right: UFLIC [SK97] with start time t0 = 0 and integration length τ = 1.
Center row: View-dependent reduction of random path lines [MCHM10]
(left: 100%, right: 10%). Bottom: Steadification with color-coding of time t
(21×11 seed grid, κref = 15, c = 2).

Steadification vs. animation Flow steadification does not aim at
replacing animation based explorations of unsteady flows. Instead,
it complements animations for cases where interactive exploration
is not available, such as static visualizations in books, papers, and
posters, or, e.g., thumbnail-like previews. With this, flow steadifi-
cation aims towards a confirmatory analysis and presentation rather
than an explorative analysis of flow data [AMST11].
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