Appendix: Trajectory Vorticity Computation and Visualization of Rotational Trajectory Behavior in an Objective Way

Anke Friederici, Holger Theisel, and Tobias Günther

ApPENDIX

What follows is the proof that trv as defined in (27)-38 is objective. We consider the observation of the trajectories in a moving reference system performing a Euclidean transformation of the form as in Eq. (1). We denote the observed measures from $(27)-\sqrt{38}$ with a tilde. This gives for the observations of $\mathbf{X}, \dot{\mathbf{X}}, \mathbf{X}$ in the new reference system:

$$
\begin{align*}
& \widetilde{\mathbf{X}}=\boldsymbol{Q}^{\mathrm{T}}(\mathbf{X}-\mathbf{B}) \tag{1}\\
& \dot{\mathbf{X}}=\dot{\boldsymbol{Q}}^{\mathrm{T}}(\mathbf{X}-\mathbf{B})+\boldsymbol{Q}^{\mathrm{T}}(\dot{\mathbf{X}}-\dot{\mathbf{B}}) \tag{2}\\
& \ddot{\tilde{\mathbf{X}}}=\ddot{\boldsymbol{Q}}^{\mathrm{T}}(\mathbf{X}-\mathbf{B})+2 \dot{\boldsymbol{Q}}^{\mathrm{T}}(\dot{\mathbf{X}}-\dot{\mathbf{B}})+\boldsymbol{Q}^{\mathrm{T}}(\ddot{\mathbf{X}}-\ddot{\mathbf{B}}) \tag{3}
\end{align*}
$$

where $\mathbf{B}, \dot{\mathbf{B}}, \ddot{\mathbf{B}}$ are $((n+1) \times m)$ matrices and $\boldsymbol{Q}, \dot{\boldsymbol{Q}}, \ddot{\boldsymbol{Q}}$ are $((n+1) \times(n+1))$ matrices defined as
$\mathbf{B}=\left(\begin{array}{ccc}\mathbf{b} & \ldots & \mathbf{b} \\ 0 & \ldots & 0\end{array}\right), \quad \dot{\mathbf{B}}=\left(\begin{array}{ccc}\dot{\mathbf{b}} & \ldots & \dot{\mathbf{b}} \\ 0 & \ldots & 0\end{array}\right), \quad \ddot{\mathbf{B}}=\left(\begin{array}{ccc}\ddot{\mathbf{b}} & \ldots & \ddot{\mathbf{b}} \\ 0 & \ldots & 0\end{array}\right)$
$\boldsymbol{Q}=\left(\begin{array}{cc}\mathbf{Q} & \mathbf{0} \\ \mathbf{0}^{\mathrm{T}} & 1\end{array}\right), \quad \dot{\boldsymbol{Q}}=\left(\begin{array}{cc}\dot{\mathbf{Q}} & \mathbf{0} \\ \mathbf{0}^{\mathrm{T}} & 0\end{array}\right), \quad \ddot{\boldsymbol{Q}}=\left(\begin{array}{cc}\ddot{\mathbf{Q}} & \mathbf{0} \\ \mathbf{0}^{\mathrm{T}} & 0\end{array}\right)$.
Eqs. (31) and (1) give

$$
\begin{align*}
\widetilde{\mathbf{X}}^{-1} & =\mathbf{X}^{-1}\left(\begin{array}{cc}
\mathbf{I} & \mathbf{b} \\
\mathbf{0}^{\mathrm{T}} & 1
\end{array}\right) \boldsymbol{Q} \tag{4}\\
\widetilde{\mathbf{H}} & =\boldsymbol{Q}^{\mathrm{T}} \mathbf{H} \boldsymbol{Q}+\dot{\boldsymbol{Q}}^{\mathrm{T}} \boldsymbol{Q}+\left(\mathbf{0}, \boldsymbol{Q}^{\mathrm{T}}\left(\dot{\mathbf{X}} \mathbf{X}^{-1}\binom{\mathbf{b}}{0}-\binom{\dot{\mathbf{b}}}{0}\right)\right)
\end{align*}
$$

Eq. (7) gives: if \mathbf{e} is an eigenvector of \mathbf{S}, then $\mathbf{Q}^{\mathrm{T}} \mathbf{e}$ is an eigenvector of $\widetilde{\mathbf{S}}$. From this follows

$$
\begin{equation*}
\widetilde{\mathbf{E}}=\mathbf{Q}^{\mathrm{T}} \mathbf{E} \tag{9}
\end{equation*}
$$

which gives

$$
\begin{align*}
\widetilde{\mathbf{S}} & =\widetilde{\mathbf{E}}^{\mathrm{T}} \widetilde{\mathbf{S}} \widetilde{\mathbf{E}}=\left(\mathbf{E}^{\mathrm{T}} \mathbf{Q}\right)\left(\mathbf{Q}^{\mathrm{T}} \mathbf{S} \mathbf{Q}\right)\left(\mathbf{Q}^{\mathrm{T}} \mathbf{E}\right)=\overline{\mathbf{S}} \tag{10}\\
\widetilde{\tilde{\mathbf{S}}} & =\widetilde{\mathbf{E}}^{\mathrm{T}} \dot{\tilde{\mathbf{S}}} \widetilde{\mathbf{E}} \tag{11}\\
& =\overline{\mathbf{S}}+\mathbf{E}^{\mathrm{T}}\left(\mathbf{Q} \dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{S}+\mathbf{S} \dot{\mathbf{Q}} \mathbf{Q}^{\mathrm{T}}\right) \mathbf{E} \tag{12}\\
& =\overline{\mathbf{S}}+\left(\mathbf{E}^{\mathrm{T}} \mathbf{Q} \dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{E}\right) \overline{\mathbf{S}}+\overline{\mathbf{S}}\left(\mathbf{E}^{\mathrm{T}} \dot{\mathbf{Q}} \mathbf{Q}^{\mathrm{T}} \mathbf{E}\right) \tag{13}\\
& =\overline{\mathbf{S}}+\left(\mathbf{E}^{\mathrm{T}} \mathbf{Q} \dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{E}\right) \overline{\mathbf{S}}-\overline{\mathbf{S}}\left(\mathbf{E}^{\mathrm{T}} \mathbf{Q} \dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{E}\right) . \tag{14}
\end{align*}
$$

Eqs. (10) and 14, $\overline{\mathbf{S}}$ being a diagonal matrix, and $\left(\mathbf{E}^{\mathrm{T}} \mathbf{Q} \mathbf{Q}^{\mathrm{T}} \mathbf{E}\right)$ being anti-symmetric gives

$$
\begin{equation*}
\widetilde{\mathbf{W}}_{s}=\overline{\mathbf{W}}_{s}+\mathbf{E}^{\mathrm{T}} \mathbf{Q} \dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{E} \tag{15}
\end{equation*}
$$

Then, Eqs. (38), (9), and (15) give

$$
\begin{equation*}
\widetilde{\mathbf{W}}_{s}=\widetilde{\mathbf{E}} \widetilde{\mathbf{W}}_{s} \widetilde{\mathbf{E}}^{\mathrm{T}}=\mathbf{Q}^{\mathrm{T}} \mathbf{W}_{s} \mathbf{Q}+\dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{Q} \tag{16}
\end{equation*}
$$

Finally, Eqs. (6) and (16) give $\widetilde{\operatorname{trv}}=\widetilde{\mathbf{W}}-\widetilde{\mathbf{W}}_{s}=\mathbf{Q}^{\mathrm{T}} \operatorname{trv} \mathbf{Q}$ which proves the theorem.
and from Eqs. (32) and (5) follows

$$
\begin{aligned}
\widetilde{\mathbf{J}} & =\mathbf{Q}^{\mathrm{T}} \mathbf{J} \mathbf{Q}+\dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{Q} \\
\dot{\widetilde{\mathbf{J}}} & =\mathbf{Q}^{\mathrm{T}} \dot{\mathbf{J}} \mathbf{Q}+\dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{J} \mathbf{Q}+\mathbf{Q}^{\mathrm{T}} \mathbf{J} \dot{\mathbf{Q}}+\dot{\mathbf{Q}}^{\mathrm{T}} \dot{\mathbf{Q}}+\ddot{\mathbf{Q}}^{\mathrm{T}} \mathbf{Q}
\end{aligned}
$$

Since $\dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{Q}$ and $\dot{\mathbf{Q}}^{\mathrm{T}} \dot{\mathbf{Q}}+\ddot{\mathbf{Q}}^{\mathrm{T}} \mathbf{Q}$ are anti-symmetric, we get

$$
\begin{align*}
\widetilde{\mathbf{W}} & =\mathbf{R}^{\mathrm{T}} \mathbf{W} \mathbf{Q}+\dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{Q} \tag{6}\\
\widetilde{\mathbf{S}} & =\mathbf{Q}^{\mathrm{T}} \mathbf{S} \mathbf{Q} \tag{7}\\
\dot{\tilde{\mathbf{S}}} & =\mathbf{Q}^{\mathrm{T}} \dot{\mathbf{S}} \mathbf{Q}+\dot{\mathbf{Q}}^{\mathrm{T}} \mathbf{S} \mathbf{Q}+\mathbf{Q}^{\mathrm{T}} \mathbf{S} \dot{\mathbf{Q}} . \tag{8}
\end{align*}
$$

