Objective Lagrangian Vortex Cores and their Visual Representations Additional Material

Tobias Günther (D), and Holger Theisel (D)

1 Setup of the Linear System

In the main paper, we have shown that the search for the optimal observer rotation along pathlines requires minimizing:

$$
\begin{equation*}
\widehat{e}_{\mathbf{p}_{0}, t_{0}, \tau}=g-2 \mathbf{u}^{\mathrm{T}} \mathbf{c}+\mathbf{c}^{\mathrm{T}} \mathbf{M} \mathbf{c} \tag{1}
\end{equation*}
$$

which is quadratic in the unknowns \mathbf{c}. The coefficients $g, \mathbf{u}, \mathbf{M}$ are computed in 2D in the following way:

$$
\begin{align*}
g & =\frac{1}{N+1} \sum_{i=0}^{N} \bar{g}_{i} \tag{2}\\
\mathbf{u} & =\frac{1}{N+1}\left(\mathbf{u}_{1}+\mathbf{L}^{\mathrm{T}} \mathbf{u}_{2}\right) \tag{3}\\
\mathbf{M} & =\frac{1}{N+1}\left(\mathbf{M}_{1,1}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{2,2} \mathbf{L}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{1,2}+\mathbf{M}_{1,2} \mathbf{L}\right) \tag{4}
\end{align*}
$$

with $\mathbf{u}_{i}=\left(\overline{\mathbf{u}}_{0}[i], \ldots, \overline{\mathbf{u}}_{N}[i]\right)^{\mathrm{T}}$ and $\mathbf{M}_{i, j}=\operatorname{diag}\left(\left(\overline{\mathbf{M}}_{0}[i, j], \ldots, \overline{\mathbf{M}}_{N}[i, j]\right)^{\mathrm{T}}\right)$ is a diagonal matrix. In 3D, we get for \mathbf{u} and \mathbf{M} instead:

$$
\begin{align*}
\mathbf{u} & =\frac{1}{N+1}\left(\begin{array}{l}
\mathbf{u}_{1}+\mathbf{L}^{\mathrm{T}} \mathbf{u}_{4} \\
\mathbf{u}_{2}+\mathbf{L}^{\mathrm{T}} \mathbf{u}_{5} \\
\mathbf{u}_{3}+\mathbf{L}^{\mathrm{T}} \mathbf{u}_{6}
\end{array}\right) \tag{5}\\
\mathbf{M} & =\frac{1}{N+1}\left(\begin{array}{ccc}
\mathbf{H}_{11} & \mathbf{H}_{12} & \mathbf{H}_{13} \\
\mathbf{H}_{12}{ }^{\mathrm{T}} & \mathbf{H}_{22} & \mathbf{H}_{23} \\
\mathbf{H}_{13}{ }^{\mathrm{T}} & \mathbf{H}_{23}{ }^{\mathrm{T}} & \mathbf{H}_{33}
\end{array}\right) \tag{6}
\end{align*}
$$

with the auxiliary matrices:

$$
\begin{aligned}
& \mathbf{H}_{11}=\left(\mathbf{M}_{1,1}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{4,4} \mathbf{L}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{1,4}+\mathbf{M}_{1,4} \mathbf{L}\right) \\
& \mathbf{H}_{12}=\left(\mathbf{M}_{1,2}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{4,5} \mathbf{L}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{2,4}+\mathbf{M}_{1,5} \mathbf{L}\right) \\
& \mathbf{H}_{13}=\left(\mathbf{M}_{1,3}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{4,6} \mathbf{L}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{3,4}+\mathbf{M}_{1,6} \mathbf{L}\right) \\
& \mathbf{H}_{22}=\left(\mathbf{M}_{2,2}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{5,5} \mathbf{L}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{2,5}+\mathbf{M}_{2,5} \mathbf{L}\right) \\
& \mathbf{H}_{23}=\left(\mathbf{M}_{2,3}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{5,6} \mathbf{L}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{3,5}+\mathbf{M}_{2,6} \mathbf{L}\right) \\
& \mathbf{H}_{33}=\left(\mathbf{M}_{3,3}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{6,6} \mathbf{L}+\mathbf{L}^{\mathrm{T}} \mathbf{M}_{3,6}+\mathbf{M}_{3,6} \mathbf{L}\right)
\end{aligned}
$$

The equivalence of $\widehat{e}_{\mathbf{p}_{0}, t_{0}, \tau}$ and Eqs. (1)-(6) is shown below in Section 4. Finally, we used second-order accurate central differences for estimating the derivatives of ω using $\Delta t=\frac{\tau}{N}$, i.e.,

$$
\mathbf{L}=\frac{1}{2 \Delta t}\left(\begin{array}{ccccccccc}
-3 & 4 & -1 & 0 & \ldots & 0 & 0 & 0 & 0 \tag{7}\\
-1 & 0 & 1 & 0 & \ldots & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1 & \ldots & 0 & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & -1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & -4 & 3
\end{array}\right)
$$

- Tobias Günther, FAU Erlangen-Nürnberg. E-mail: tobias.guenther@fau.de
- Holger Theisel, University of Magdeburg E-mail: theisel@ovgu.de.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication xx xxx. 201x; date of current version $x x$ xxx. 201x. For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org. Digital Object Identifier: $x x . x x x x / T V C G .201 x . x x x x x x x$

As shown in the main paper, \mathbf{u} and \mathbf{M} are then used to solve for the optimal observer rotation, which is stored in $\mathbf{c}_{\text {opt }}$:

$$
\begin{equation*}
\mathbf{c}_{o p t}=\mathbf{M}^{-1} \mathbf{u} \tag{8}
\end{equation*}
$$

2 Proof of Lemma 1

To prove Lemma 1, we have to show

$$
\begin{align*}
e\left(\mathbf{x}_{R a}, \mathbf{a}_{R a}, t\right) & =0 \tag{9}\\
\nabla_{\mathbf{x} a} e\left(\mathbf{x}_{R a}, \mathbf{a}_{R a}, t\right) & =\mathbf{0} \tag{10}\\
\mathbf{H}_{\mathbf{x a}}\left(\mathbf{x}_{R a}, \mathbf{a}_{R a}, t\right) & \text { is positive definite } \tag{11}
\end{align*}
$$

where $\nabla_{\mathbf{x a}} e=\left(\frac{\partial e}{\partial x}, \frac{\partial e}{\partial y}, \frac{\partial e}{\partial a}, \frac{\partial e}{\partial b}, \frac{\partial e}{\partial \omega}\right)^{\mathrm{T}}$ is the gradient of e in both the space and the parameters of the Killing field, and $\mathbf{H}_{\mathbf{x a}}=\nabla_{\mathbf{x a}}\left(\nabla_{\mathbf{x a}} e\right)$ is the Hessian matrix of e. Eqs. (9) and (10) are easy to see by inserting $\mathbf{x}_{R a}$ and $\mathbf{a}_{R a}$ and evaluating. To show Eq. (11), we decompose $\mathbf{H}_{\mathbf{x a}}$ into 3 components $\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{R}$ by

$$
\begin{equation*}
\mathbf{H}_{\mathbf{x a}}\left(\mathbf{x}_{R a}, \mathbf{a}_{R a}, t\right)=\mu \mathbf{H}_{1}+\mu R^{2} \mathbf{H}_{R}+\mathbf{H}_{2} \tag{12}
\end{equation*}
$$

with

$$
\begin{gather*}
\mathbf{H}_{1}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 8 & 0 & 240(t-1 / 2) s^{2} \\
0 & 0 & 0 & 32 & 640 s^{3} \\
0 & 0 & 240(t-1 / 2) s^{2} & 640 s^{3} & 200 s^{4}\left(64 s^{2}-36 s+9\right)
\end{array}\right) \tag{13}\\
\mathbf{H}_{R}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4
\end{array}\right) \tag{14}\\
\mathbf{H}_{2}= \tag{15}\\
\left.\begin{array}{ccccc}
8 & 0 & 0 & -4 & h_{1,5} \\
0 & 32 & 8 & 0 & h_{2,5} \\
0 & 8 & 2 & 0 & h_{3,5} \\
-4 & 0 & 0 & 2 & h_{4,5} \\
h_{1,5} & h_{2,5} & h_{3,5} & h_{4,5} & h_{5,5}
\end{array}\right)
\end{gather*}
$$

with

$$
\begin{align*}
& h_{1,5}=-80 s^{3} \tag{16}\\
& h_{2,5}=-240(t-1 / 2) s^{2} \tag{17}\\
& h_{3,5}=-60(t-1 / 2) s^{2} \tag{18}\\
& h_{4,5}=40 s^{3} \tag{19}\\
& h_{5,5}=50\left(16 s^{2}-36 s+9\right) s^{4} . \tag{20}
\end{align*}
$$

For them, it holds

$$
\begin{equation*}
\operatorname{Rank}\left(\mathbf{H}_{1}\right)=\operatorname{Rank}\left(\mathbf{H}_{2}\right)=2 \quad, \quad \operatorname{Rank}\left(\mathbf{H}_{R}\right)=1 \tag{21}
\end{equation*}
$$

We show that $\mathbf{H}_{1}, \mathbf{H}_{2}, \mathbf{H}_{R}$ are positive semi-definite in the following way: let s_{1}, s_{2} be the sum of the two non-zero eigenvalues of $\mathbf{H}_{1}, \mathbf{H}_{2}$, respectively. Further, let p_{1}, p_{2} be the product of the two non-zero eigenvalues of $\mathbf{H}_{1}, \mathbf{H}_{2}$, respectively. This gives

$$
\begin{align*}
s_{1} & =200 s^{4}(-4 s(-16 s+9)+9)+40 \tag{22}\\
p_{1} & =6400 s^{4}(-4 s(-4 s+9)+9)+256 \tag{23}\\
s_{2} & =50 s^{4}(-4 s(-4 s+9)+9)+44 \tag{24}\\
p_{2} & =100 s^{4}(-4 s(-68 s+45)+45)+340 \tag{25}
\end{align*}
$$

Keeping in mind $0 \leq s \leq \frac{1}{4}$, we get

$$
\begin{equation*}
s_{1}, s_{2}, p_{1}, p_{2}>0 \tag{26}
\end{equation*}
$$

which shows that $\mathbf{H}_{1}, \mathbf{H}_{2}$ are positive semi-definite. The positive semidefiniteness of \mathbf{H}_{R} is obvious, which gives that $\mathbf{H}_{\mathbf{x a}}$ in (12) is positive semi-definite as well. To show that $\mathbf{H}_{\mathbf{x a}}$ is positive definite, we have to additionally show that $\mathbf{H}_{\mathbf{x a}}$ has full rank. This is done by computing

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{H}_{\mathbf{x a}}\left(\mathbf{x}_{R a}, \mathbf{a}_{R a}, t\right)\right)=262144 R^{2} \mu^{3} \tag{27}
\end{equation*}
$$

which gives that $\mathbf{H}_{\mathbf{x a}}$ is positive definite for positive μ, R. The sheet "ProofLemma1.txt" in the additional material presents a Maple proof of this.

3 Proof OF mp

To proof that $\mathbf{m}_{\mathbf{p}}$ in Eq. (34) and $\mathbf{m}_{r, \mathbf{p}}$ in Eq. (35) of the main paper are identical to Eqs. (43)-(51) of the main paper is shown in the accompanying Maple sheets "Proofmp2D.txt" and "Proofmp3D.txt" for both 2D and 3D.

4 Proof of $\widehat{e}_{\mathbf{p}_{0}, t_{0}, \tau}$

The equivalence of Eq. (62) of the main paper and Eqs. (1)-(6) of this additional material is shown in the accompanying Maple sheets "Proofehat2D.txt" and "Proofehat3D.txt" for both 2D and 3D.

